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Brief Background

Per the description of the Statement of Work of GRANT No. N00014-95-1-G037. this two-vear
grant was intended to fill a number of current and near-future needs of NRL's cosmic-ray basic
research efforts as well as related applied research effortd like SEE (space-radiation environinent
studies) that have been developed or currently being extended by the cosnllic rays group at NRL.

The support has been analytic and computational in nature in the general area of modeling of
cosmic-ray transport in the heliosphere.

This final report describes the main support afforded by this g.ra,nt to NRL's cosmic-ray group
for the two vears (9/95-9/97) of the grant. The main task, by far. has been the development, testixlg.
and data comparison, of a global time-dependent and three-dimensional heliospheric transport code
of ga.la.ct,ié cosmic rays. While the code is based on current. standard and established theory of
solar modulation of galactic cosmic rays. it is far more computationally demanding than what a
typical application-oriented study may require (e.g.. tasks with connection to SEE work). To such
ends. the purpose of developing such a code was to afford the group a fully three-dimensional solar-
modulation model by which a computationally efficient parametric set of simulated data (that can
easily and efficiently be incorporated in larger semi-empirically based models like CREME96 (Tylka
et al. 1997) for example) can reliably and efficiently be developed (e.g.. Adams & Lee 1996).

This development should afford the group both qualitative and quantitative advantage in this
regard and relative to modulation codes currently available to the group which tend to be rudi-
mentary one-dimensional (so-called sphericallv-symmetric) codes.

The first section of this report describes in some detail the basic physical model the new three-
dimensional transport code is based upon. The second section highlights the numerical imple-
mentation and various algorithms of the code. while the main routines are listed as an appeundix.
The third section illustrates some sample calculations and comparison to available data. The
fourth section suggests some directions and recommendations for future work based on this code
lor applications-oriented studies by the group at NRL. as well as for more basic-physics oriented

improvements. The fifth and final section is a list of cited references.
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1. Solar Modulation of Galactic Cosmic Rays

1.1 The Physical Model
The standard model of long-term solar modulation of GCR that is used for our purposes in thix

work is the one based on Jokipii & Parker (1970) transport equation:
Q_Q =V (K*VU) =V -Vl = (V) -V + 1(\' . \7,,‘,)—2-(0'1“(") X (1)
ot : 3 aT
where 7 = U(7,T,t) is the number density of GCR as a function of position 7, kinetic energy 7,
and time t. U is related to the (solar-minimum) observable omni-directional cosmic-ray intensity ;
as j= ¢l /(47). where v is the particle’s speed. The streaming flux vector F is then written
F=-R*VTU + (VU + V[l - li(aﬂ-‘)] : (2)
s 30T :
and the anisotropv vector is §=F /tl. Below we briefly describe the various terms in Eq. (1)
and the associated physical processes thev represent. a in Egs. (1) and (2) is the standard scalar
function « = (2m,c* + T.) /(m,e® + T), with m,c* being the rest-mass of the particle.

Eq. (1) is a dynamic-balance (i.e., time-dependent) statement for [’ in three dimensions that
is subject to the four fundamental physical processes that comprise the standard model of so-
lar modulation: (1)diffusion (due to the irregular componenf of the heliospheric magnetic field):
(2)convection (due to the outflowing solar-wind plasma carrving with it the frozen-in heliospheric
magnetic field lines): (3)drift (due to the large-scale curvature and gradient of the regular compo-
nent of the heliospheric magnetic field. and (4)adiabatic energy loss (due to the diverging solar-wind
plasma). |

The heliospheric magnetic field is taken to be composed of an irregular component superposed
on a regular one. i.e., B = ﬁa + 6B. with ¥ - B = 0. We use the standard! description for. the
regular component of the heliospheric magnetic field. i.e.. a multi-sector field with Parker’s spirals
and with opposing polarities above and below a wavy current sheet (Kéta & Jokipii 1983: and

relerences therein):

B,(r.6.0)=B,(r.0)[1 =256 -46)]. (3

where the single-polarity field B,(r.#). note its o-independence, is written

B.,(r.0)= 4 [,—12- F = Qs sin@/Vy,r ag] . (4)

Tasof vet. our numerical code does not take advantage of a recent suggestion (Jokipii & Wéta 1989; Smith & Bieher
1991) as well as observation (Smith et al. 1993) 1o modify the average field in the polar regions. This modification.

however. can casily e made as well as others as outlined in §4.2 of this report.
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(r, 8. @) refers to a heliocentric spherical coordinate system that we adopt here. 4 is a constant that
carries both the strength and polarity (depending on the solar cyvcle) of the single-polarity field.
and g, is the rotational speed of the Sun around its axis. Vj,. is the solar-wind speed with a radial
but #-dependent velocity profile® : -

Vow(8) = Vo (0)F = Vo (1 4 psin? M)# (5)
where A is the solar geomagnetic latitude. 17, is the solar-wind speed at zero latitude. and p is
a fitting parameter correlated with the solar cvcle (Ananthakrishnan et al. 1993). Note that
T 1w # 0. S(6—#') is a step function with ¢ given by

0= g + sin“[sin a sin(e — o, + rQs/Viw)] . {6)

and a is another fitting parameter related to the t.ili angle of the current sheet at the Sun (also
correlated with the sola,r.cycle), and ¢, is an arbitrary constant. The current sheet is essentially
defined by S(8 —6").3

The drift velocity vector averaged over near-isotropic pitch-ahgle scattering is written (Jokipii
ot al. 1976):

- P('-‘j - e -
(Va)y = Er V' x (B./B;) - ()

where P is the magnitude of the particie’s momentum with charge ¢ and 3 = v/c¢, where ¢ is the
speed of light. Note that V - (V) = 0, and (Fy) is both polarity and charge sensitive via gA being
> 0 or < 0. Angle brackets in (\7'4) denote averaging of pitch-angle resonant scattering along the
field lines due to the irregular component of the field.

The irregular component of the magnetic field is taken to be a random stationary field with zero
mean. (083) = 0. and characterized by a Kolmogorov-like power spectrum (i.e.. x F{(6B-B)} x
l=¢) (Jokipii 1971). with & being the wavenumber.  the Kolmogorov spectral index, and F{-- -}

denotes Fourier transform. The symmetric diffusion tensor in the local solar-wind {rame is written:

_ Ky 00
Ke=[ 0 wxy 0]. (8)
0 0 f\f||

2Unlike the discussion in Note 1. and although this dependence was not. typically part of the standard modulation
model. it was included in ‘our numerical code early on due to the full tiine-dependent three-dimensional physical
picture it was built to model. A second reason for its early inclusion had to do with our paving special attention
to the question of inner boundary conditions and the so-called Péclet-spectrum analvsis that we per%form in our

numerical solution of the convective-diffusive Eq. (1). §2.2

B . . . . . .
See accompanying figure for a perspective of the magnetic current sheet in cartesian coordinates.
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where, from quasi-linear theory,

oo 2]

with R being the particle’s rigidity. B¢ is the strength of the field at Earth. and &, is a constant. The
-

s = ko B2 3 | (9)

last term in Eq. (9) arises from requiring that the particle’s gvroradius remains smaller than the
scattering mean-free-path (Morfill & Volk 1979: Jokipii & Davila 1981) throughout the modulation
region. We will have more to say about g in §1.2. In the heliocentric spherical coordinate svsten

~

K ® becomes

Kyp 0 Ryra .
K¢ = 0 Kgg 0 . (10)
- Rer . 0 - Kog

where. in terms of k) and s .

Ky = Ky cos* W 4k sin® W .

Kpre = (KL — K} cosWsin ¥ .

Kgg = KL . {11)
Rayr = Krg «

2 .2
Koo = K1 €os” W + rysin” ¥ .

and W = tan ™" (rQs/Vi).

To complete the physical picture of the standard modulation model one needs to specifv phyvs-
icallv meaningful initial and boundary conditions. We will. however. defer this discussion 1o 7.2,
where. due to the full time-dependent and three-dimensional nature of the model and its numericai
implementation. coupled with a rather stiff and complex transport PDE. we pay special attention

Lo such conditions in our Péclet analysis section of the transport process.

1.2 Standard Quasi-Linear Cross-Field Diffusion

The theory of cross-field diffusion and its applications. e.g.. to cosmic rays heliospheric transport.
owes its inception to the works of Jokipii and Parker (Jokipii 1966; Jokipii and Parker 1969a: Jokipii
1973) where the mechanism was understood as mainly a non-resonant one due to the random-walk
of the magnetic field lines themselves. so that test particles propagating along the field lines will also
diffuse normal to the lines. Cross-field diffusion due to resonant scatiering was shown 10 contribute

little to the mechanism (Jokipii & Parker 1969a). [Note that the same mechanism was also being

studied in the context of plasma physics and applications to Tokamak-field turbulence (Rosenbluth ~

et al. 1966: for a recent review see. e.g.. Isichensko 1992).]
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In addition to application to cosmic rays heliospheric transport, which is the focus of this work.
cross-field diffusion also plays significant roles in other astrophysical applications like diffusive shock-
acceleration theories (Drury 1983: Lagage & Cesarsky 1983; Blandford & Eichler 1987: Jokipii 1987:
Jokipii & Morfill 1987; Achterberg & Ball 1994; Duffy et al. 1995: Giacalone & Jokipii 1996) and
cosmic rays galactic transport (Jokipii & Parker 1969b: Skilling et al. 1974: Ptuskin 1979: Barge
et al. 1984: Corbelli & Veltri 1989: Chuvilgin & Ptuskin 1993: Achterberg & Ball 1994: Giacalone
& Jokipii 1994: Dendy et al. 1995: Duffy et al. 1995: Klepach 1995; Ptuskin 1995).

The two essential ingredients in the theory of cross-field diffusion are the separation rate of the
two (initially close) wandering field lines and the scaling of the perpendicular diffusion coefficient
with the strength of the magnetic turbulence. The separation rate is understood to be a critical
length scale in the problem as the two lines (and test particles that are tied to them) tend to become
independent beyond this length scale. Early estimates of the separation rate (Jokipii 1973: Ptuskin
1979: Barge et al. 1984) give a rate on the order of the inverse of the turbulence correlation length.
[More recent numerical (Zimbardo et al. 1995: Zimbardo & Veltri 1995) and analvtic (Barghouty &
Jokipii 1996) estimates suggest a more complex separation rate that. in addition to the correlation
length. is coupled to the strength of the turbulence in a non-trivial. multi-region fashion. See §4.2
for more on the role of nonlinear cross-field diffusion. as opposed to quasi-linear description. in
GCR modulation modeling.]

The standard quasi-linear description (Jokipii 1971) for the random walk of the field lines. in

the limit when the scattering mean free path is > the turbulence correlation length (. is expressed

as
(A2?) 1 /* , n o Pk =0) .
_ —_ 1: i WD —m——— 12
s B _'x'( C22(0,0.27) B , (12)

with ¢y, being the correlation function of éB, taken in the limit Az > ¢, and P, (k = 0) is the

corresponding power spectrum at zero wavenumber. x, is then given by

r

h~ Pk =0). (13)

[The quasi-linear scaling is evident here in that the diffusion coefficient scales with 30*.] Comparing

the above expression to a similarly derived expression for K| at high rigidities

2-¢,
pp~ (14)
T’Ia‘("7 = 0)
and using an extrapolated estimate for P,.(k = 0). one is led to qualitatively conclude that
Ky K Ry . (15)
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.~ept. perhaps, for very small rigidities where the above expressions do not apply.

Thus in standard modulation models of GCR it has become a standard practice to assume that
the magnitude of x is simply only a small fraction of xy. typically g 10%. i.e.. and apart from the
actual numerical ratio one would use for # /#). £y is essentially coupled to x). Therefore. aud
while we do not address more recent suggestions for variapts of this assumption (e.g.. anisotropy in
#, . modifications due to larger fields at high latitudes, etc. (see discussions in. e.g.. Kéta & Jokipii
1995. Bieber et al. 1995), for our purposes here. it must be kept in mind that the quasi-linear scaling
is what is typically assumed in standard modulation models. as in the above standard quasi-linear
expressions. as well as in variations thereof. independent of the assumed numerical ratio ») /.

In addition to the standard quasi-linear scaling alluded to above. the standard separation rate
as deduced from quasi-linear theory (Jokipii 1973: Barghouty & Jokipii 1996) is dependent both
on the so-called large-step diffusion coefficient. D = (Az?)/Az as given in Eq. (12) above. with
its quasi-linear scaling embedded in, as well as on the paraliel length scale in the turbulence (. To

illustrate this for a turbulent field with truncated Kolmogorov-like power spectrum, i.e..

(k) + k2)
(k2 + (‘—2)(/'3+2

P (k) = /(l3r'exp(i1::- ) Cpr(F) % exp(—=k3€3) . (16)
with being the wavevector and (; (< () being the turbulence inner scale. the Fokker-Planck
diffusion coefficient Drp(p) = (Ap*)/Az. where p = |67 | € ( and 87 = (dx.dy) is the 2-d

separation vector between the two lines in the r-y plane, can —to first-order in 3¢% = ((;/()*—= be

written as (Barghouty & Jokipii 1996)

pera0o{1- 2 (8) |aken(®) —amena()|} . 09

where K, (Z) is the Bessel function of an imaginary argument and I' is Euler’'s gamma function. ¢,

and ¢, are expansion coefficients in 4(* given by

&
E]=1+—————-— €y =

(2= C+4a7)

A3 .
(—z-_—z(-lig-:—) , (18)
In short, by standard parameterization of the diffusion coefficient and the separation rate in the
qna.éi-linear description of the random walk of the field lines we are referring to a scaling o §b°
and a separation rate that depends on a parallel correlation length of §B.4 Further, the statistics

is inherently Gaussian and the geometry is slab-like. Taken together, the quasi-linear description

For a magnetic field in Z, . Z cartesian coordinates with a uniform part B, along z and a normal fluctuating one
dB(x.y.z). B = B, + 0B. with (03) = 0 and subject to ¥ < B = 0. the relative turbulence strength is ~

defined as 00 = ((0B - 0B >)1/ 2/ B,,. where angle brackets denote ensemble averaging.
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of cross-field diffusion is, therefore, inherently a classical brownian-motion description of the field

lines.

2. Numerical Implementation

2.1 Numerical Solution of the Transport Equation in 144 Variables

We have developed our own numerical solution (Barghouty 1997) that integrates over t Eq. (1)
in three spatial dimensions (r. 8. ®) and the kinetic-energy variable T. i.e.. a full numerical solution
in 144 variables. In this section we brieflv describe the method by which our numerical solutios i-
arrived at since it deviates from some of the earlier developed ones for this problem (we are referring
here to solutions based, e.g.. on Crank-Nickolson techniques and alternating direction implicit (or
ADI) schemes with either momentum or energy as pseudo-time (e.g.. Fisk 1971. 1976; Perko &
Fisk 1983).)

Our numerical code integrates Eq. (1) using the so-called numerical method of lines (Scheisser
1991) in which the time variable is kept ~“continuous™ and the finite-differencing scheme is applied
to the other four variables at different points along a “time-line” which is then integrated. The
advantage from separating the time variable from the rest is that the stability issue of the solution
is. from the outset. separated from the accuracy issue. For a PDE like Eq. (1). simple eigenvalue
tests can reveal the stiffness of the equation (this stifiness can also be readilv appreciated by the
many orders-of-magnitude separation in the strengths of the various diffusion-tensor terms at widely
separated radial points). so that the stability issue is of concern.

All first-order and second-order diffusion-related derivatives of the dependent variable U7 on the
RHS of Eq. (1) are evaluated at a certain ¢ using a five-point centered differencing scheme (i.e.. ac-
curate o fourth-order in the step size of the respective variable). All first-order convection-related
derivatives are evaluated using a five-point either upwinnd or downwind biased (depending on the
variable) differencing scheme. All field. diffusion tensor. and drift vector terms along with their
first and second order derivatives are evaluated analvticallv. Once all derivatives ol {7 all collected
as the RHS of Eq. (1) at all # points along the time-line. they are integrated using the (truly un-
conditionally stable and extremely efficient) sparse Jacobian-matrix technique of Hindmarsh (1982)
(see also Bvrne & Hindmarsh 1987) appropriate for stiff PDEs. The accuracy in this integration

scheme is completely under the control of the user. -

2.2 Boundary Conditions and Péclet Analysis

“Initial condition™ for the purpose of reaching a stationary solution means at / = ) we assume
that {7 takes on the unmodulated LISM isotropic distribution at the assumed outer heliospheric
boundary of 7, = 100 AU. of the the form {"(rx . 8.0.T) = U,(T) = const (m,* +T)7" where 4 is
the typical LISM-spectrum exponent 2.63-2.75. This ~initial condition™ assumption also serves as

the boundary condition for I at r,, = 100 AU. The inner heliospheric boundary condition at r, =
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.01 AU is either taken to be U(r,. 0. ¢, T) = 0. or the number-density conserving condition according
to Liouville’s theorem, i.e., F (r0,0,0,T) =0 (which was assumed in the sample calculations of §3)
depending on the level of analysis. For Eq. (1) this condition is expressed as

U 1 9
e, = 73" Vgl V)]

(19)

r=r,

Both conditions seem to give very similar results at | AU, but this is not assured to be the
case throughout the modulation region nor for all energies. For boundary conditions in the angle
variables, dU/90 = 0 = 9U/Jo are assumed periodic over the range [0, ] for # and [0, 2x] for o.
Because of the complete symmetry of the solution about the current sheet, the range for 8 is taken
to be [0.#%/2] thereby treating the inner singularity in the solution (when B = 0 at all points on
the sheet) as a boundary condition for 8. The singularity at # = 0° is treated using 'Hospital rule.
For the "b(;unda,ry" condition in T we simpl_v assume that U(r.0,0.Ty) = Up(rac.6.0.T). with
T+ = 100 GeV /Nucleon.

We perform a Péclet analysis of Eq. (1). and as we brieflv describe below. the analysis touches
upon both the viability of the numerical solution. on the one hand, as well as the assumed boundary
conditions. on the other. Péclet number (or spectrum for energv-dependent transport coefficients
as in Eq. (1)) is defined as the ratio of the convection group to the diffusion group in the PDE
times the characteristic length scale in the problem. For Eq. (1), for example. we can define the

Péclet spectrum for the # and » convection and diffusion groups as

Pe(8.T) = [(Va)a(r™.0.6". T)|roc/kes(r™.8.67.T) . (20)
Pr(8.T) = (V) r(r™.8.6". T) 4 Vo (8) |roc /Koy (™. 8. 0. T) . (21)

for some r~ and ¢~. The significance of this numbet is that when it is too high (> 1), indicative
of a strongly convective PDE, one needs to pay special attention to the behavior of the numerical
solution at both exterior and interior boundaries as it can admit spurious discontinuities which
can propagate throughout the characteristic length. In other words. the PDE can (numerically) be
made to resemble more an advection equation with its usual reflective properties. but with spurious
implications for its diffusive properties.

In numerical studies of Eq. (1). and especially with issues related to diffusion in three dimen-
sions, this, in turn, may lead to erroneous and numerically-induced spurious “physical” features in
the transport (e.g., Schiesser 1996). To illustrate. in Fig. 1 we plot Py(6.T) for H calculated at
1 AU but averaged over ¢. What Fig. | seems to indicate is that except for high-energy protons
and close to the sheet in the ecliptic. the f-transport is weakly convective (or mostly diffusive).
Contrast this with the P.(6,T) spectrum in Fig. 2 for the radial groups where for low-énerg;_\,-"

protons and essentially for all @ the r-transport is primarily convective.
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3. Sample Calculations and Comparison to Data

To give a feel for the high efficiency of the integration algorithm we use. for the sample calcu-
lations we show below and using a grid size of 15 x 15 x 15 x 15 (radial and energy grid points are
logarithmically spaced). i.e.. 50.625 ODEs to be solved in general, and with a prescribed relative
accuracy of 1% (for time-integration). the method rgquired the actual evaluation of only 11.99x
ODEs (or grid-point visits) due to the sparsity of the Jacobian matrix of the ODE svstem (about
24% of total number of ODEs that other methods, generally speaking, may have to solve). With
increasing grid size, the efficiency gets even better as the sparsity increases and an order of mag-
nitude increase in efficiency is not untypical. Reaching a stationary solution required a mere 67
points along the time-line for a total CPU-elapsed time of 3.1 hrs (or about 23 ODEs per sec) on
a DEC-ALPHA 250 machine.

For illustration purposes {our focus is on solar-minimum steady-state solutions) Eq. (1) is
integrated until a stationary solution is reached (¢ < 0.15 ¥r) with the prescribed accuracy. Tiine-
sensitive solutions are, naturally, also available. On a relatively coarse grid. Fig. 3 shows a sample
calculated ¢-averaged H flux at 1 AU and # = 90° (in units of particles/m?-sr-s-MeV /Nucleon)
at solar minimum. Data from the 1977 and 1987 solar minima are also shown (even though the
calculations pertain to ¢A > 0 .i.e.. 1977 solar-minimum). Table 1 lists the salient assumed physical
parameters in the illustrations. Fig. 4 shows the calculated solar-minimum H flux as a function of
the polar angle 6 at 1 AU for three different energies where relaxation to isotropy with increasing

energy is evident. In Figs. 5 and 6 the local 8§ and » gradients are plotted for H at solar minimum,
4. Recommendations for Future Work

4.1 Semi-Empirical Modeling

Semi-empirical expressions for an effective long-term modulation of galactic cosmic rays can be
put forward under the assumptions of steady-state and spherical symmetry conditions as has been
done by. e.g.. Evenson et al. (1983). Garcia-Munoz et al. (1985), and more recently by Adams & -
lee (1996).> In these semi-empirical expressions convection, diffusion and adiabatic energy losses

[but no drift effects]® are all lumped into an effective diffusion coeflicient (r. T). so that one can

?One can even use an effective modulating potential (Gleeson & Axford 1968) in a nunerical simulation as has been

done by. e.g.. Letaw et. al. (1984).
51 is possible to heuristically include such effects in this semi-empirical context by lumping the radial component

of the drift velocity vector to the radial solar-wind velocity vector. However, this drift addition is due to all spatial
inhomogeneities in the regular heliospheric magnetic field and not just along the radial direction. As such, and in a
spherically svmmetric picture of the modulation region one is not justified in.including only the radial component

of the drift while ignoring the others!
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arrive by direct integration at a simple expression of the form

U(r.T):U(,(T)exp[ / drV DN T)| . (22)

where the spatial dependence of D(r.T) is separated from its T (or rigidity) dependence and is
made to account for the adiabatic energy losses. *

Semi-empirical expressions like the one above appear to be insensitive to the assumed outer
boundary of the modulation region as well as to the exact form by which D(r.T) depends on both
r and T. Also. such expressions appear to give reasonable fit to near Earth data over the !l-vv
solar-cvcle, i.e.. not just for solar-minimum conditions, when D is allowed to take on different values
over the cycle. i.e.. taking D as function of time in addition to r and T. Modulation studies using
such semi-empirical expressions tend to converge to the main conclusion that. in solar as near Earth
data are concerned, the steady-state. sphericall_v;symmetAric modulation model of galactic cosmic
rays is not an unreasonable one.

[For near Earth data one needs to keep in mind that this regime of the overall modulation region
represents but a deep and hence asymptotic (in the mathematical sense of the transport equation
and in the sense of the distance that the galactic cosmic-ray particle has to travel from the outer
houndary of the heliosphere to near Earth) regime of the solution both in space and time. Thus.
it mayv not be all that surprizing that the steadyv-state assumption appears to be a reasonable one.
The spherical-svmmetry assumption. on the other hand. is less obvious. But one can still argue
that at lower energies (€ GeV/Nucleon). where the modulation is much more pronounced and
significant. adiabatic energy losses dominate over the diffusive (and other) aspects of the transport
process and as a result the modulation is less sensitive to variations in the diffusion terms (as well
as assumed geometry). especially so for near Earth observations.]

One possible semi-empirical direction one can take is to use the simulated results of the 3D
code to build a data base of the simulated modulating scalar factor 7 (7. T)/U,(T) throughout the
heliosphere and as a function of rigidity. This way any transported particle at any given point i~ is
assigned a factor depending on its rigiditv. Computationally this should be quite efficient. if not
all that robust. Semi-empirically. one can think of this modulating scalar function as similar to the

one appearing in Eq. (22) in the lowest order. i.c.. in the sense of expansion in (r. 6, 0).
4.2 Improvements to the Physical Model

4.2.1 Nonlinear Cross-Field Diffusion
In recent studies of cross-field diffusion (Zimbardo et-al. 1995: Zimbardo & Veltri 1995) and

analvtic (Barghouty & Jokipii 1996) the nonlinearity appears to be an overriding characteristic that

points to the non-Gaussian statistics in the problem. i.e.. the random-walk of the field lines can

no longer be viewed as a browniau-like motion with Gaussian-like statistics but rather (depending
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on the strength of the turbulence) as Lévy flights with long-range correlations according to non-
Gaussian (Lévy) distributions (e.g.. Shlesinger et al. 1993). Another interesting finding in the
same studies is that the statistics appear to be consistent with the standard quasi-linear (which
is consistent with Gaussian) statistics when the relative turbulence strength is large enough. The
studies have shown that for 6b 3 .2 quasi-linear statistics is a valid description of the random-
walk of the field lines. whereas for 60 < .2 the lines tend to exhibit non-Gaussian diffusion and
a quasi-linear description appears inadequate. Forr;al analvsis of this behavior attributes this
non-Gaussian diffusion to the effects of higher-order correlations and magnetic percolation.

Turning to the scaling of the perpendicular diffusion coefficient with the relative turbulence
strength. another important facet in the description of cross-field diffusion. the recent numerical
calculation of Gray et al. (1996) has also shown that the quasi-linear scaling. i.e.. Dy x db°
appears adequate for large 6. consistent with the non-linear calculations alluded to above. In this
study. the fluctuating field is taken to be composed of a slab-like and a 2-dimensional components.
i.o.. 8B(x.y.z) = 8Bap(a.y) + 8B,(z). What was found (for models appropriate for solar wind
turbulence) is that the scaling D) x 80 is the correct one for an R0%. 2-dimensional + 20% slab
turbulence. Wihile the study assumed classical diffusion (i.e.. Gaussian statistics was used in the
numerical realization of the fluctuating field). it nonetheless points to another interesting feature
of the turbulence in that as 80 — 0 D — Dap. where Dyp is the 2D-fluctnations diffusion
coefficient as described in the non-perturbative theorv of field lines random-walk of Matthacus
et al. (1993). Dsp = 6Bspl,/B,. where ( is the correlation length of the 2D turbulence, and
Dy = 1/2 (Ds; + \/D? +4D3). This result is to be contrasted with the slab-like coefficient.
D, = 8B3(/2B2. where ( is the correlation length along the mean field. In short. it appears from
this study that in the limit of small turbulence level. the perpendicular diffusion coefficient in 2-d
turbulence geometries depends on a length scale other than a parallel one (as the quasi-linear theory
would suggest). and appears not to lollow the quasi-linear scaling.

IFor the purpose of this work. it appears from these recent studies of the random walk of
the field lines that: (i) On the one ha.n(l.4<|uasi-linea‘r description may still be appropriate for
large relative turbulence strength irrespective of the assumed turbulence geometry (2-d vs. slab)
and statistics (non-Gaussian vs. Gaussian). This finding is rather unexpected since in the very
development of quasi-linear theory assumptions about small turbulence levels were made for the
theory to be applicable and it was further assumed that for large turbulence levels quasi-linear
theory may not be applicable due to the method by which the diffusion coeflicient was derived.
i.e.. in the limit of db°> <« 1 (Jokipii 1966. 1971: Jokipii & Parker 1969a). (/i) On the other
hand. quasi-linear description of field lines random walk has been shown by these studies to he
inadequate for small turbulence levels under the assumption of either (Gaussian or non-Gaussian

statistics and especially for 2-d turbulence geometries. This is a far reaching conclusion. and its
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implications for the heliospheric transport of cosmic rays deserves concerted analytic as well as
numerical efforts. One direction is to couple the perpendicular diffusion coefficient to both the
relative turbulence strength and an appropriate normal length scale. thus coupling geometry with
statistics in a description of the random walk of field lines.

The parameterization of the so-called (effective) anorpalous diffusion developed for magnetic
turbulence with strong anisotropy (Rosenbluth et al. 1966: Krommes 1978; Rechester & Rosenbluth
1978: Kadomstev & Poguste 1979: Isichenko 1991. 1992) can be used to accomplish such a coupling.
In this nonlinear description of the random walk of the field lines. the anisotropy (due to s > 3 as
in solar-wind turbulence geometries) has been shown to significantly enhance the transport across
the mean field. i.e., giving rise to an effectively large x7 .

[For a general 2-d magnetic turbulence characterized by correlation lengths along and across the
the mean field, () and (1, a INoliogorov length (f for the exponential divergence of the field lines
in the plane normal to the mean field. i.e.. (p(z)) = p,exp(z/(x). where p(z) is as described in
Sect. 1.3 and p, = p{z = 0). and field-lines diffusion coefficient D,, (e.g.. D) in a 2d-turbulence

geometry as alluded to in Sect. 1.1). the effective cross-field diffusion is written

Rl = Ky % [ln (%%\—)] - . (23)

While the above formulation was developed and applied to magnetic turbulence characterized by
large Kubo numbers, R = 6b ((y/fL) > 1. i.c.. the so-called magnetic percolation regime. its
applicability does not appear to be restricted to this regime (Isichenko 1991). We will be applying
it in the regime that is characteristic of space and astrophysical plasmas. i.e.. R ~ Q(db) < |
(Zimbardo et al. 1995: Zimbardo & Veltri 1995: Barghoutv & Jokipii 1996).

For (s, {))) and (k1. (1) the parameterization and values of the (unenhanced) standard descrip-
tion are retained. while noting that s > w1 and (1 >~ R(}. For D,, we will take advantage of the
parameterization of Matthaeus et al. (1995). and for (; we will use a fit to the entropy calculation
of Barghouty & Jokipii (1996) wherein (, ~3(R~!/2.

Note that for small 8b the above paramcterization of nonlinear cross-field diffusion takes into
account both the effects of the 2d-turbulence geometry on the diffusivity of the field lines (Matthien-
et al. 1995: Gray et al. 1996) via the scaling character of D,, as well as the non-Gaussian statistics
of the lines random-walk (Zimbardo et al. 1995: Zimbardo & Veltri 1995: Barghouty & Jokipii
1996) via ;.. Moreover. when 8b is large enough the parameterization reduces quite smoothly to
the quasi-linear description.

One can first explore the degree to which this nonlinear parameterization deviates from the

standard one insofar as the calculated long-term cosmic rays fluxes are concerned throughout the -

imodulation region, with particular emphasis on latitudinal transport and the observed high degree
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of isotropy therein, e.g., Ulysses’ recent observations (Mckibben et al. 1995a). Also. by calculating
time-sensitive cosmic rays fluxes. one is able to focus on short-terms effects of cross-field diffusion.
e.g.. interactions with CIRs and the current sheet (Jokipii & Kdta 1995: Mckibben et al. 1995b).

Finally. and from fits to various observed radial and latitudinal cosmic rays intensity gradients at

-both low and high latitudes and inner and outer heligspheric locations (Forsyth 1995: Smith et al.

1995; McDonald & Lal 1995), an optimized working set of solar-minimum solar-wind turbulence
and HMF parameters can be collected.

4.2.2 Modification to the HMF in the Polar Regions

This modification was first suggested by Jokipii & Kdéta (1989) to allow the HMF to become
larger than the standard Parker’'s HMF model at high latitudes. It was motivated by recent
observations of the mean and fluctuating components of the HMF at high latitudes (e.g.. Smith &
Bieber. 1991). R

The modification simply amounts to adding a o-term of the HMF that is x » and implies
a non-zero azimuthal component for the HMF as # — 0 (note that the standard Parker’s spiral
expression suggests that By — 0 as § — 0). Smith & Bieber (1991) argued that one could invoke
a differential solar rotation as function of 8 to justify this modification.

In principle, such a modification is straightforward to implement in a numerical code. In this
code. however. and since we calculate all diffusion and drift terms (which are affected by this
modification) analvtically so as to mininize the numerical error. implementing the modification is
still straightforward but somewhat labor (algebra) intensive. Finally, we note that this particular
modification does keep the large-scale HMF a divergence free field. with or without the presence of
the sheet, as well as keep V - (\7',1) = 0.” On the other hand. it is far from clear that this particular
modification is of any more consequence than, say. the (still poorly understood) role of the cross-
field diffusion in shaping the overall transport picture of galactic cosmic rays in a three-dimensional

heliosphere.

4.2.3 The Anomalous CR Component

The extension of the code to include the anomalous component is also. in principle. straightfor-
ward since the transport equation for this component is essentially identical to Eq. (1) except for
source and sink terms to reflect gains and losses caused by ionization. In addition to these terms.
one has to assume an initial (or injection) distribution function for the ACR particle in the vicinity
of the shock region —around 80 AU- (Jokipii 1990).

‘Since this new azimuthal term is only a function of 1. the overall divergence of the HMF is still zero. Also. owing

1o the identity ¥+ ¥ X [\’ectOl‘] = 0. and from Eq. (7) it follows that (\,1> is still divergence free as well.
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Table 1. Salient physical parameters with their values as used in the sample calculations.

PARAMETER VALUE UNITS
TRANSPORTED PARTICLE Z-NUMBER 1 -
TRANSPORTED PARTICLE A-NUMBER 1 -

MAX. PARTICLE KINETIC ENERGY - 1.000 x 10*2 GeV /Nucl.
MIN. PARTICLE KINETIC ENERGY 1.006x 1072 GeV /Nucl.
INNER HELIOSPHERIC BOUNDARY 1.000 x 1072 Al
OUTER HELIOSPHERIC BOUNDARY 1.000 x 10 AU
LISM-SPECTRUM  EXPONENT -2.65 x 10° -
STRENGTH OF DIFFUSION TENSOR 2.500 x 1013 AUZ /yr
PERP. to PARALLEL DIFFUSION 1.000 x 10! -
STRENGTH OF DRIFT VECTOR 1.400 x 10+4 Ali/yr
STRENGTH OF HMF 3.322 x 10! pG-AL?
TILT ANGLE OF SHEET & RMIN 20 deg
dB-SPECTRUM  EXPONENT e 21,00 x 100 -
SOLAR-WIND SPEED 4 O-LAT. 9.850 x 10! AU/yr
SOLAR-WIND HELIOMAG-LAT PAR. 6.800 x 10! -
SOLAR ROTATIONAL SPEED 9.450 x 10*1 rad/yr
BOUNDARY CONDITION & RMIN F=o0 1/yr
GRID SIZE r.0.0.T) 15x15%x15x%x 15 -
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A perspective of the magnetic current sheet. with @' given by Eq. (6). in cartesian coordinates.
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Peche, Yumber

Fig. 1. Péclet spectrum for H as a function of kinetic energy and polar
angle at 1 AU, for the 6 groups calculated according to (20).

Fig. 2. Péclet spectrum for H as a function of kinetic energy and polar
angle at 1 AU, for the » groups calculated according to (21).
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Fig. 3. Model calculations of solar-minimum o-averaged GCR-H spectrum at § = 90
deg and 1 AU (solid curve) and at 100 Al (dashed curve). Open triangles are 1987 solar-
minimum data while open squares are 1977 data. Note though that the calculations were
performed for ¢A > 0, i.e., 1977 solar-minimum.
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Fig. 4. Calculated @-averaged solar-minimum H flux at 1 AU as a function of polar
angle for three different energies.
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Fig. 5. Calculated local f-gradient as a function of energy. In[7(5%)/(90%)]/85°. in
o/deg. at 1 AU.
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energy. in %/AU, at 6 = 90 deg.
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Appendix 1. List of Main FORTRAN77 Routines for code PARADIGM

PROGRAM PARADIGM

DYNAMIC SOLAR-MODULATION OF GCR IN POLAR SPHERICAL COORDINATES
MODELLED BY A. F. BARGHOUTY
PHYSICS DEPT., ROANOKE COLLEGE, SALEM, VA 24153
[FOR THE COSMIC-RAY SECTION, NRL, WASHINGTON, DC)
[UNDER NRL GRANT No. N00014-95-1-G037]

June 1997

FLOWCHART OF THE COMPLETE SYSTEM ORGANIZATION AND OPERATION FOR THE
SOLUTION OF THE TRANSPORT EQUATION USING THE NUMERICAL METHOD OF
- LINES [cf. Schiesser, W. E. (1991)]

.........................

.BEGIN EXECUTION OF MAIN.
PROGRAM PARADIGM

.........................

................

. READ THREE .
...................... +.DATA LINES (1).

................

...................

............

.PRINT DATA.
SUMMARY
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+
. INCREMENT THE . . CALL SUBROUTINE INITIAL .
.RUN COUNTER (5). .TO INITIALIZE THE MODEL (2).
+
‘ +
.......... R i CALL SUBROUTINE PRINT
.PRINT ERROR SUMMARY. . TO.PRINT THE NUMERICAL .
IF REQUESTED (4) - . .SOLUTION (INITIAL CONDITIONS.+....
..................... . FOR FIRST CALL). STORE
+ . SOLUTION FOR SUBSEQUENT
. PLOTTING
+
.CALL SUBROUTINE PLOTS. YES . END OF RUN .
.VIA SUBROUTINE PRINT .+............. (FINAL VALUE.
TO PRINT THE ENTIRE . .OF TIME) (3).
SOLUTION VS TIME . o
[OPTIONAL] .
.NO
+
.................... COMMON/Y/ e ettt ettt e e e
CALL SUBROUTINE .+4+. v ieuuunn. CALL SUBROUTINE LSODES. .
. PDE TO COMPUTE . . TO INTEGRATE THE MODEL.......
.THE MODEL TEMPORAL. . DIFFERENTIAL EQUATIONS.
DERIVATIVES (6) ..ooovonon.. +.OVER ONE PRINT INTERVAL.
.................... COMMON/F/ e e e e e e et e e e et

-----------------------

.CALL SYSTEM UTILITIES.
TO ASSIST IN
COMPUTATION OF
.TEMPORAL DERIVATIVES

(7)

.......................

EXPLANATORY NOTES FOR THE ABOVE FLOWCHART
(1) LINE 1 - TITLE(20) (READ VIA 900 FORMAT (20A4))

LINE 2 - TO,TF,TP (READ VIA 901 FORMAT (3E10.0))



da

Che,

o

ho,

Jdag¢

ha

RO

do

TeXs

LS

e

LINE 3 - N,NMAX,NTYPE,NPRINT, IRRTYP, ERROR
(READ VIA 902 FORMAT (415,2X,3A1,E10.0))

IF **END OF RUNS** IS ENTERED IN COLUMNS 1 TO 11 OF LINE 1 IN
ANY SET OF THREE DATA LINES, PROGRAM EXECUTION IS TERMINATED
AND LINES 2 AND 3 OF THAT SET ARE NOT REQUIRED. MULTIPLE
SETS OF DATA LINES MAY BE USED, THREE LINES PER SET. THE
MAIN PROGRAM WILL READ EACH SET AND EXECUTE A RUN UNTIL AN
**END OF RUNS** LINE IS READ.

SUBROUTINE INITIAL IS CALLED ONCE PER RUN. THEREFORE DATA
LINES MAY BE READ FROM THIS SUBROUTINE TO DEFINE INITIAL
PARAMETERS OF THE MODEL EQUATIONS FOR EACH RUN. THE ADDI-
TIONAL DATA LINES WOULD BE PLACED BEHIND THE THREE BASIC
DATA LINES OF (1) ABOVE.

THE END OF RUN CONDITION IS T GE TF WHERE T IS THE FIRST ELE-
MENT IN COMMON/T/ (GENERATED BY MAIN PROGRAM PARADIGM) AND TF
IS READ FROM DATA LINE (2) OF (1) ABOVE.

NPRINT = 1 WILL PRINT A SUMMARY OF THE DEPENDENT VARIABLES IN
COMMON/Y/ FOR WHICH THE ESTIMATED TEMPORAL INTEGRATION (TRUN-
CATION) ERROR EXCEEDED THE MAXIMUM PERMISSIBLE VALUE, ERROR,
(READ FROM DATA LINE (3) OF (1) ABOVE) AT ANY POINT DURING
THE RUN. IF NPRINT = 0, TEMPORAL INTEGRATION ERRORS WILL NOT
BE REPORTED.

THE RUN COUNTER, SET BY MAIN PROGRAM PARADIGM, IS THE THIRD
ELEMENT IN COMMON/T/ E.G., COMMON/T/T,NFIN, NORUN

THE FUNDAMENTAL LINKAGE IN THIS SYSTEM IS THROUGH COMMON/Y/
WHICH CONTAINS THE MODEL DEPENDENT VARIABLE VECTOR AND COMMON
/F/ WHICH CONTAINS THE VECTOR OF TEMPORAL DERIVATIVES OF THE
DEPENDENT VARIABLE VECTOR. FOR EXAMPLE, THIS LINKAGE COULD
BE PROGRAMMED AS

COMMON/T/T,NFIN, NORUN/Y/U(NEQ) /F/PUPT (NEQ)
WHERE THE DEPENDENT VARIABLE VECTOR U(NEQ) IS GENERATED BY THE

TEMPORAL INTEGRATOR, SUBROUTINE LSODES, FROM THE DERIVATIVE
VECTOR, PUPT(NEQ), GENERATED BY SUBROUTINE PDE.

MAIN PROGRAM PARADIGM IS THE CALLING PROGRAM FOR A SERIES OF SUB-

N IO LR B

o,

. p.r\a

P

ROUTINES WHICH DEFINE AND INTEGRATE THE TEMPORAL DIFFERENTIAL
EQUATIONS. THE COMPLETE PROGRAM CONSISTS OF THE FOLLOWING
COMPONENTS

(1) MAIN PROGRAM PARADIGM - PERFORMS OVERALL CONTROL OF THE

THE TOTAL PROGRAM.

(2) SUBROUTINE INITIAL - SETS THE INITIAL CONDITIONS FOR THE

TEMPORAL INTEGRATION.

(3) SUBROUTINE PDE - DEFINES THE TEMPORAL DERIVATIVE VECTOR

(PROVIDED BY THE USER). ALSO USES SUPPLIED FUNCTIONS.
(4) SUBROUTINE DIFF - PERFORMS SPATIAL DIFFERENTIATION.

(5) SUBROUTINE LSODES - PERFORMS THE CENTRALIZED TEMPORAL
INTEGRATION.
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COMMON/T/ T,TO0,TF,NSTOP, NORUN

1 /Y/ Y (10000)

2

/F/ F(10000)
COMMON/ 10/ NI, NO
DIMENSION YV(10000), RWORK(4500000), IWORK(10000)

CHARACTER*9 REALTIME, REALDATE
EXTERNAL FCN, JAC

ARRAY FOR THE TITLE (FIRST LINE OF DATA), CHARACTERS END OF RUNS

CHARACTER TITLE(20)*4, ENDRUN(3) *4

VARIABLE FOR THE TYPE OF ERROR CRITERION
CHARACTER*3 ABSREL

DEFINE THE CHARACTERS END OF RUNS
DATA ENDRUN/'END ’,’OF RU’,'NS '/

DEFINE THE INPUT/OUTPUT UNIT NUMBERS AND FILES
NI=5

NO=6

CALL TIME (REALTIME)

CALL DATE (REALDATE)

OPEN (NI, FILE='INPUT.DAT',6 STATUS='OLD')

OPEN (NO, FILE='OUTPUT.DAT’ , STATUS='NEW' )

INITIALIZE THE RUN COUNTER
NORUN=0

BEGIN A RUN
NORUN=NORUN+1

INITIALIZE THE RUN TERMINATION VARIABLE
NSTOP=0

READ THE FIRST LINE OF DATA
READ (NI, 1000,END=999) (TITLE(I),I=1,20)

TEST FOR END OF RUNS IN THE DATA
DO 2 I=1,3

IF(TITLE(I) .NE.ENDRUN(I))GO TO 3
CONTINUE

AN END OF RUNS HAS BEEN READ, SO TERMINATE EXECUTION
STOP

READ THE SECOND LINE OF DATA
READ (NI, 1001, END=999)TO0,TF, TP

READ THE THIRD LINE OF DATA
READ (NI, 1002, END=999) NEQN, NMAX, INT, IERROR, ABSREL, ERROR

PRINT A DATA SUMMARY

WRITE (NO,1003) REALTIME, REALDATE, NORUN, (TITLE(I), I=1,20),
TO,TF, TP,
NEQN, NMAX, INT, IERROR, ABSREL, ERROR
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INITIALIZE TIME
T=TO

SET THE INITIAL CONDITIONS
CALL INITIAL

PRINT THE INITIAL CONDITIONS
CALL PRINT (NI, NO)

SET THE INITIAL CONDITIONS FOR SUBROUTINE LSODES
DO 5 I=1,NEQN

YV(I)=Y(I)

CONTINUE

SET THE PARAMETERS FOR SUBROUTINE LSODES
TV=T0

ITOL=1

RTOL=ERROR

ATOL=ERROR

LRW=4500000

LIW=10000

IOPT=0

ITASK=1

ISTATE=1

MF=222

INITIATE THE INTEGRATION
TOUT=TV+TP

CALL SUBROUTINE LSODES TO COVER ONE PRINT INTERVAL
CALL LSODES (FCN,NEQN, YV, TV, TOUT, ITOL, RTOL, ATOL, ITASK, ISTATE,
IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)

PRINT THE SOLUTION
T=TV

DO 6 I=1,NEQN
Y(I)=YV(I)
CONTINUE

CALL PRINT (NI, NO)

TEST FOR AN ERROR CONDITION
IF(ISTATE.LT.O0) THEN

PRINT A MESSAGE INDICATING AN ERROR CONDITION
WRITE (NO,1004) ISTATE

GO ON TO THE NEXT RUN
GO TO 1
END IF

CHECK FOR A RUN TERMINATION
IF(NSTOP.NE.0)GO TO 1

THE INTEGRATION HAS PROCEEDED SATISFACTORILY, SO PREPARE FOR THE
NEXT INTERVAL IN T. NOTE THAT THE FOLLOWING CALCULATION OF THE
OUTPUT TIME, TOUT, PRODUCES THREE OUTPUT POINTS FOR EACH DECADE
INT

TOUT=TV* (1.0E+01) ** (1.0E+00/3.E+00)
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CHECK FOR THE END OF THE RUN
IF(TV.LT. (TF-0.5E+00*TP))GO TO 4

THE CURRENT RUN IS COMPLETE, SO PRINT THE COMPUTATIONAL STAT-

ISTICS FOR LSODES AND GO ON TO THE NEXT RUN

CALL TIME (REALTIME)

CALL DATE (REALDATE)

WRITE (NO, 8) RWORK(11) , IWORK(14),IWORK(11), IWORK(12),IWORK(13),
IWORK(17) ,IWORK(18) ,METHOD

FORMAT (//10x, ' COMPUTATIONAL STATISTICS - TIME INTEGRATION:',/

10X"============================================’,/
10x, 'LAST STEP SIZE = ',1PE10.4,/
10x, 'LAST ORDER OF THE METHOD = ',I10,/
10x, 'TOTAL NUMBER OF STEPS TAKEN = ',I10,/
10x, 'NUMBER OF FUNCTION EVALUATIONS = ',I10,/
10x, 'NUMBER OF JACOBIAN EVALUATIONS = ',I10,/
10X, ' LENGTH OF ARRAY [RWORK] REQUIRED = ’,I10,/
10X, 'LENGTH OF ARRAY[IWORK] REQUIRED = ‘,I10,/
10X, ' INTEGRATION METHOD = ',I10,/
lox,’============================================'/)
WRITE (NO, 81) NORUN, REALTIME, REALDATE
FORMAT (10X, 'END OF RUN NO. - ‘,I2,’ @ ',A8,2X,A9/)
GO TO 1 :

kkkhkhhkhkhkhkkhkhhhhkhhhhdhhrhhhhkdbhdhohhkhhkhrhdhhkrdhrhhhddhhhbdkrkhhrrhhbhkdbkhdkhhdt

FORMATS

FORMAT (20A4)
FORMAT (3E10.0)
FORMAT (415, 2X,A3,E10.0)

FORMAT (/

1 2X,A8,2X,A9,/,

1 1X,’ RUN NO. - ‘,I2,2X,20R4,//,

2 1X,' INITIAL TIME - ’',1pE10.3,/,

3 1X,’ FINAL TIME - ’,1pE10.3,/,

4 1X,’' PRINT TIME - ',1pEl0.3,/,

5 1X,’ NUMBER OF DIFFERENTIAL EQUATIONS - ',IS5,/,

6 1X,’ PRINT INTERVAL/MINIMUM INTEGRATION INTERVAL - ’,IS5,/,
7 1X,' INTEGRATION ALGORITHM - ’,I2,’' - LSODES ',/,
8 1X,’ INTEGRATION ERROR MESSAGES - ’',I1,/,

9 1X,’ ERROR CRITERION - ' ,A3,/,

A 1X,’ MAXIMUM INTEGRATION ERROR - ‘,1PE10.3)
FORMAT (1X,/,' ISTATE = ',I3,/,

* INDICATING AN INTEGRATION ERROR, SO THE CURRENT RUN' ,
* 1S TERMINATED. PLEASE REFER TO THE DOCUMENTATION FOR’ ’
' SUBROUTINE’,/,25X,'LSODES’,/,
' FOR AN EXPLANATION OF THESE ERROR INDICATORS' )
END
SUBROUTINE FCN (NEQN, TV, YV, YDOT)

SUBROUTINE FCN IS AN INTERFACE ROUTINE BETWEEN SUBROUTINES LSODES
AND DERV

DSS/2 COMMON AREA

COMMON/T/ T, TO, TF,NSTOP, NORUN
/Y/ Y (1)
/F/ F(1)

VARIABLE DIMENSION THE DEPENDENT AND DERIVATIVE ARRAYS
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DIMENSION YV (NEQN), YDOT (NEQN)

TRANSFER THE INDEPENDENT VARIABLE, DEPENDENT VARIABLE VECTOR
FOR USE IN SUBROUTINE DERV

T=TV

DO 1 I=1,NEQN

Y (I)=YV(I)

CONTINUE

EVALUATE THE DERIVATIVE VECTOR
CALL PDE

TRANSFER THE DERIVATIVE VECTOR FOR USE BY SUBROUTINE LSODES
DO 2 I=1,NEQN

YDOT(I)=F(I)

CONTINUE

RETURN

END

SUBROUTINE JAC

SUBROUTINE JAC IS A DUMMY ROUTINE TO SATISFY THE LOADER (SINCE JAC
IS DECLARED AS AN EXTERNAL IN THE MAIN PROGRAM LSODES). JAC IS NOT
ACTUALLY CALLED UNLESS AN OPTION OF LSODE IS SELECTED WHICH REQUIRES
THE USER TO PROVIDE THE ODE ANALYTICAL JACOBIAN MATRIX. THIS IS
USUALLY NOT THE CASE SINCE FOR MOST PROBLEMS, THE JACOBIAN MATRIX

IS CALCULATED INTERNALLY BY LSODE USING FINITE DIFFERENCES

RETURN

END
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........................... CONSTANTS! FILE. ...ttt i mecnnesoneesonensessns
Constant Description

...........................................................................

...........................................................................

TILTO Tilt angle of the magnetic neutral sheet AT the Sun.
TILTO corresponds to a minimium tilt of 10 deg at
Solar minimum and a maximum tilt of 30 deg at
Solar maximum, i.e., the tilt of the sheet correlates
with the 11-yr sunspot cycle.
L1222 R R XX RS RS R XSRS RZRES X2 2XX 2 X2l s iXa s it R 2 8 X

***kkx* AT TIME=0 yr, SOLAR MINIMUM IS ASSUMED ***kkk**%
khkkhkkhkdhkkhkhdhkhhbdhhhhbhhrbdhhbdhhhbdrhhhbhdbhhbhrhhbhhthbhkhhkhhbhkhhkhkdkdkdhdhkdd
TILTO is taken here to be 20.0 deg.

in radians;

BO Strength of the photospheric magnetic field x solar
radius”2 - corresponds to a field strength of
50. micro-Gauss at Earth’s orbit. (Could be positive
or negative depending on polarity and the 22-yr solar
cycle!) Assumed positive over the first 11-yr half
solar cycle and negative over the second.
in (micro-Gauss x AU™2);

Ws Solar rotational speed (corresponds to 3.0E-6 rad/s)
in rad/yr;

Vsw_0 Solar-wind speed (assumed radial of 400 Km/s) at 0-deg
heliomagnetic latitude; Vsw has a heliomagnetic profile
in AU/yr;

WO The factor WO is a phenomenological solar-activity

factor - when W0=0 the solar wind is latitude-indep.;
it is about 0.68 under solar-minumum conditions for
a velocity profile that increases with heliomagnetic
latitude

dimensionless;

DO Strength of local diffusion terms
(corresponds to 1.5E+22 cm™2/s)
in AU®2/yr;

ETA Relative strength of normal diffusion term to tangential
term (in local solar-wind frame). ETA is typically << 1
dimensionless;

Vo Strength of drift-velocity terms
in AU/yr

EO amu Rest-mass
in GeV/c*2;

Z Atomic number of particle being transported
dimensionless; ‘

>

Mass number of particle being transported
dimensionless;



Rmax Upper range of radial distance from the SUN, i.e.,
C outer Heliospheric boundary
- in AUs
Rmin Lower range of radial distance from the SUN, i.e.,
C inner Heliospheric boundary - nonzero
< in AUs
Pmax Upper range of polar angle -w.r.t. rotational axis of
- the SUN
C in rad
- Pmin Lower range of polar angle -w.r.t. rotational axis of
. the SUN
C in rad
fad Amax Upper range of azimuthal angle around the Sun .
in rad
- Amin Lower range of azimuthal angle around the Sun
C in rad
- Emax Upper range of particle’s kinetic energy
in GeV/nucleon
C Emin Lower range of particle’s kinetic energy
[<3 in GeV/nucleon
. EXPONENT This is the exponent in total energy of the assumed
c LISM density - typically -2.65 to -2.75
. EXP This is the exponent in the power spectrum of the fluctuating
C component of the Heliospheric magnetic field - a purely
- Kolmogorov spectrum has EXP=5/3; a Kraichnan spectrum has
EXP=3/2, etc.
c
c BC This is the assumed boundary condition at R=RMIN; when
BC='U0’ the model assumes U(RMIN)=0. for all times, i.e.,
- the density function and hence the intensity is assumed
C zero at R=RMIN, and when BC='SF’, the model assumes the
o streaming flux being zero at R=RMIN, i.e., absorbing Sun,
which satisfies Liouville’s theorem.
C
== c Speed of light in AU/yr
L T T T e A I
o
....... Grid 3-dimensional heliocentric polar spherical
"~ coordinate system) + Energy
C ( Radial, POLAR, Azimuthal, Kinetic Energy)
:; PARAMETER ( NR=15, NP=15, ©NA=15, NE=15
CHARACTER*2 BC
(a1
e LISM-spectrum:
‘ DATA EXPONENT/-2.65/
C
e Fluctuating component of HMF:
DATA EXP/1.000/
C
B Regular component of HMF:
5 DATA BO,TILT0/33.218, .349/
C
Covvvnn. Solar Wind:

DATA WS,Vsw_0,W0/94.5,84.4, .68/



-------

.......

.......

-------

DATA VO/1.4E+4/

Diffusion:
DATA DO,ETA/2.5E+3, .10/

Particle:
DATA EO,2ZNo,ANo/0.938,1.,1./

3-D Grid Ranges:
DATA RMAX,RMIN/100.,.01/

DATA PMAX,PMIN/1.57080,8.72664E-2/
DATA AMAX,AMIN/3.14159, .0/

Energy Range:
DATA EMAX,EMIN/100., .01/

Boundary condition at R=RMIN:
DATA BC/’'SF'/

Physical and mathematical constants:
DATA c,PI/6.31E+4,3.14159/



‘EST RUN(S) FOR THE SOLUTION OF THE JP EQUATION

0.E+00 . 5.00E+00 1.E-6
06251000 2 1 REL 1.E-02
ND OF RUNS



COMMON/T/ T, TO, TF, NSTOP, NORUN
/Y/ U(NR,NP,NA,NE),TYME(0:1000000)
/F/ UT(NR,NP,NA, NE)
/S/ UR(NR,NP,NA,NE), URR(NR,NP,NA,NE), URA(NR,NP,NA,NE),
UP (NR,NP,NA,NE), UPP(NR,NP,NA,NE),
UA (NR,NP,NA,NE), UAA(NR,NP,NA,NE),
AD (NR,NP,NA,NE), ADE(NR,NP,NA,NE), ADER(NR,NP,NA,NE),
UO (NR,NP,NA,NE), FLUX_ r(NR,NP,NA,NE),
FLUX p(NR,NP,NA,NE), FLUX_ a(NR,NP,NA,NE),
ANISOT r (NR,NP,NA,NE), ANISOT p(NR,NP,NA,NE),
ANISOT a(NR,NP,NA,NE), FLUX(NR,NP,NA,NE)
/C/ RMIN, RMAX, PMIN, PMAX, AMIN, AMAX, EMIN, EMAX,
R(NR), P(NP), A(NA), E(NE), IEO, JEO, KEO, BC
COMMON/PDE/DIFFUSION, CONVECTION, DRIFT, ADIABATIC, SOURCE,
R_DIFFUSION,A DIFFUSION,P DIFFUSION,R_DRIFT,P_DRIFT,
A _DRIFT

MNP OV WD

N =
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SUBROUTINE INITIAL

INCLUDE ‘CONSTS.MODEL’
INCLUDE ‘' COMMON.MODEL’

common nprint,ip
COMMON/IO/ NI,NO
NPRINT=1 -

COMPUTE THE RADIAL, POLAR, AZIMUTHAL, AND ENERGY POSITIONS:
NOTE: RADIAL AND ENERGY POSITIONS ARE LOGARITHMICALLY SPACED!

DELTA_R= (RMAX/RMIN) **{1./(NR-1.))

IEO=1
DO I=1,NR
IF(I.EQ.1) THEN
R(1)=RMIN
ELSE
R(I)=R(I-1)*DELTA R
END IF
IF (R(I).GT.0.75.AND.R(I).LT.1.15) IEO=I
END DO
JEO=1
DO J=1,NP
P(J)=(J-1)* (PMAX-PMIN) / (NP-1) +PMIN
END DO
KEO=1
DO K=1,NA
A(K)=(K-1)* (AMAX-AMIN) / (NA-1) +AMIN
END DO
DELTA E=(EMAX/EMIN) ** (1./(NE-1.))
DO L=1,NE
IF(L.EQ.1) THEN
E(1)=EMIN
ELSE
E(L)=E(L-1)*DELTA E
END IF
END DO

SET THE INITIAL CONDITIONS AT TIME=0, I.E., LOCAL-ISM SPECTRUM:
DO I=1,NR
DO J=1,NP
DO K=1,NA
DO L=1,NE
IF(I.EQ.NR) THEN
U0(I,J,K,L)=SPECTRUM(E (L)) *VELOCITY (E(L))/(4.*PI)
U(1,J,K,L)=U0(I,J,K,L)
ELSE
U(I,J,K,L)=0.
END IF
END DO
END DO
END DO
END DO



RETURN
END .
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SUBROUTINE PDE

LOGICAL EARTH_ ORBIT
INCLUDE 'CONSTS.MODEL’
INCLUDE ‘COMMON.MODEL’

ic=ic+1l !COUNTER
TYME (IC) =T

ZERO ALL TERMS;
U is omni-directional, differential CR-intensity function that is
being transported;
[in no. of particles/(m"2-sr-s-GeV/N)]
DO I=1,NR
DO J=1,NP
DO K=1,NA
DO L=1,NE
UT(I,J,K,L
UR(I,J,K,L
URR(I,J,K
RA(I,J,K,
UP(I J,K,L)
UPP(I,J,K,L
UA(I,J,K,L)
UAA(I,J,K,L
AD(I,J,K,L)=0.
ADE(I,J,K,L)=0.
ADER(I,J,K,L)=0.
R DIFFUSION=0.
P_DIFFUSION=0.
A DIFFUSION=0.
DIFFUSION=0.
CONVECTION=0.
R_DRIFT=0.
P_DRIFT=0.
A_DRIFT=0.
DRIFT=0.
ADIABATIC=0.
END DO
END DO
END DO
END DO

t-!L—va

SET BOUNDARY CONDITION AT R=RMAX:
DO J=1,NP
DO K=1,NA
DO L=1,NE
U(NR,J,K,L)=U0(NR,J,K,L)
END DO
END DO
END DO

SET THE BOUNDARY CONDITION AT E=EMAX
DO I=1,NR
DO J=1,NP
DO K=1,NA
U(I,J,K,NE)=U0(NR,J,K,NE)
END DO
END DO
END DO



N0 0O N0

SET .BOUNDARY CONDITION AT R=RMIN IF BC='U0’:
IF(BC.EQ.’U0’) THEN
NOTE: This BC corresponds to U(RMIN)=0. for all T!
DO J=1,NP
DO K=1,NA
DO L=1,NE
U(1,J,K,L)=0.
END DO
END DO
END DO
END IF

ADIABATIC-COOLING TERM:
DO I=1,NR '
DO J=1,NP
DO K=1,NA
DO L=1,NE
AD(I,J,K,L)=ALPHA(E (L)) *E(L)*U(I,J,K,L)
END DO
END DO
END DO
END DO

COMPUTE THE FIRST-ORDER DERIVATIVES IN E:
CALL DSS_4d(LOG(EMIN) , LOG (EMAX) ,NR,NP,NA,NE, 4,AD,ADE,0.)
DO I=1,NR
DO J=1,NP
DO K=1,NA
DO L=1,NE
ADE(I,J,K,L)=ADE(I,J,K,L)/E(L)
END DO
END DO
END DO
END DO

COMPUTE THE SECOND-ORDER MIXED DERIVATIVES IN E-R IF BC='SF’':
IF(BC.EQ.'SF’) THEN

CALL DSS_4d (LOG (RMIN) , LOG (RMAX) ,NR,NP,NA,NE, 1, ADE, ADER, 0.)

This mixed derivative is needed as a boundary condition at R=RMIN
when the "S"treaming "F"lux is assumed zero at R=RMIN, rather than
density U being assumed zero. "SF" BC satisfies Liouville’s theorem,
whereas BC "U0O" does not! ~

DO I=1,NR
DO J=1,NP
DO K=1,NA
DO L=1,NE
ADER(I,J,K,L)=ADER(I,J,K,L)/R(I)
END DO
END DO
END DO
END DO
END IF

COMPUTE THE FIRST-ORDER DERIVATIVES IN R FOR DIFFUSION:
CALL DSS_4d (LOG(RMIN) , LOG(RMAX) ,NR,NP,NA,NE,1,U,UR,0.)
DO I=1,NR
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DO J=1,NP
DO K=1,NA
DO L=1,NE
UR(I,J,K,L)=UR(I,J,K,L)/R(I)
END DO
END DO
END DO
END DO

COMPUTE THE SECOND-ORDER DERIVATIVES IN R FOR DIFFUSION:
CALL DSS_4d(LOG (RMIN), LOG (RMAX) ,NR,NP,NA,NE,1,UR,URR,0.)
DO I=1,NR
DO J=1,NP

DO K=1,NA

DO L=1,NE

URR(I,J,K,L)=URR(I,J,K,L)/R(I)

END DO

END DO
END DO
END DO

COMPUTE THE SECOND-ORDER MIXED DERIVATIVES IN R-A FOR DIFFUSION:

CALL DSS_4d (AMIN, AMAX,NR,NP,NA,NE,3,UR,URA,0.)

COMPUTE THE FIRST-ORDER DERIVATIVES IN R FOR CONVECTION:
CALL DSS_4d(LOG (RMIN) , LOG (RMAX) ,NR,NP,NA,NE,1,U,UR, -1.)
DO I=1,NR
DO J=1,NP
DO K=1,NA
DO L=1,NE
UR(I,J,K,L)=UR(I,J,K,L)/R(I)
END DO
END DO
END DO
END DO

COMPUTE THE FIRST-ORDER DERIVATIVES IN P FOR DIFFUSION:
CALL DSS_4d(PMIN, PMAX,NR,NP,NA,NE,2,U,UP,0.)

SET BOUNDARY CONDITIONs AT P=PMIN and P=PMAX:
DO I=1,NR
DO K=1,NA
DO L=1,NE
UP(I,1,K,L)=0.
UP(I,NP,K,L)=0.
END DO
END DO
END DO

COMPUTE THE SECOND-ORDER DERIVATIVES IN P FOR DIFFUSION:
CALL DSS_4d(PMIN, PMAX,NR,NP,NA,NE, 2,UP,UPP,0.)

COMPUTE THE FIRST-ORDER DERIVATIVES IN P FOR CONVECTION:
CALL DSS_4d(PMIN, PMAX,NR,NP,NA,NE,2,U,UP,0.)

SET BOUNDARY CONDITIONs AT P=PMIN and P=PMAX:’
DO I=1,NR
DO K=1,NA
DO L=1,NE
UP(I,1,K,L)=0.
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UP(I,NP,K,L)=
END DO
END DO
END DO

COMPUTE THE FIRST-ORDER DERIVATIVES IN A FOR DiFFUSION:
CALL DSS_4d (AMIN,AMAX,NR,NP,NA,NE,3,U,UA,0.)

SET BOUNDARY CONDITIONs AT A AMIN and A=AMAX:
DO I=1,NR
DO J=1,NP
DO L=1,NE
UA(I,J,1,L)=0.
UA(I,J,NA,L)=
END DO
END DO
END DO

COMPUTE THE SECOND-ORDER DERIVATIVES IN A FOR DIFFUSION:
CALL DSS_4d (AMIN, AMAX,NR,NP,NA,NE,3,UA,URAA,0.)

COMPUTE THE FIRST-ORDER DERIVATIVES IN A FOR CONVECTION:
CALL DSS_4d (AMIN, AMAX,NR,NP,NA,NE,3,U,UA,0.)

SET BOUNDARY CONDITIONs AT A=AMIN and A=AMAX:
DO I=1,NR
DO J=1,NP
DO L 1,NE
(I J,1,L)=
UA(I J,NA,L)
END DO
END DO
END DO

ASSEMBLE THE PDE:
DO I=1,NR
DO J=1,NP
DO K=1,NA
DO L=1,NE

The collective sum of radial diffusion terms:

R_DIFFUSION=UR(I,J,K,L)*(2.*Drr (R(I),P(J),A(K),E(L),T)/R(I)+

Drr_r(R(I),P(J),A(K),E(L),T))+
URR(I,J,K,L)*Drr(R(I),P(J),A(K), (L) T) +
(UA(I,J,K,L)*(Dra(R(I),P(J) A(K) E(L),T)/R(I)+

Dra_r(R(I),P(J),A(K),E(L) T))+
URA(I,J,K,L)*Dra(R(I),P(J),A(K),E(L),T))/
(R(I)*SIN(P(J)))

NOTE: URA(I,J,K,L)=UAR(I,J,K,L); the term appears both
in the radial diffusion terms as well as in the
azimuthal diffusion terms.

The collective sum of polar diffusion terms:
P_DIFFUSION=UP(I,J,K,L)/(R(I)**2)*

(Dpp (R(I),P(J),A(K),E(L),T)*COS(P(J))/

SIN(P(J))+Dpp_p(R(I),P(J) A(K),E(L),T)

UPP(I,J,K,L)/(R(I)**2)

*Dpp (R(I),P(J),A(K),E(L),T)

)+

’
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The .collective sum of azimuthal diffusion terms:

A _DIFFUSION=UAA(I,J,K,L)*Daa(R(I),P(J),A(K),E(L),T)/
(R(I)*SIN(P(J)))**2+
URA(I,J,K,L)*Dar(R(I),P(J),A(K),E(L),T)/
(R(I)*SIN(P(J)))

The collective sum of all diffusion terms in 3d§
DIFFUSION=R_DIFFUSION+P_DIFFUSION+A_DIFFUSION

The convection term due to a radial solar-wind velocity profile:
CONVECTION=UR(I,J,K,L) *Vsw(P(J) )+
2.*U(I,J,K,L)*Vsw(P(J))/R(I)

The radial, polar, and azimuthal drift terms:
R_DRIFT=VDR(R(I),P(J),A(K),E(L),T)*UR(I,J,K,L)

P_DRIFT=VDP(R(I),P(J),A(K),E(L),T)*UP(I,J,K,L)/R(I)

A_DRIFT=VDA(R(I),P(J),A(K),E(L),T)*UA(I,J,K,L)/
(R(I)*SIN(P(J)))

The collective sum of drift terms in 34d:
DRIFT=R_DRIFT+P_DRIFT+A_DRIFT

The adiabatic cooling term:
ADIABATIC=(2.*Vsw(P(J))/(3.*R(I)))*ADE(I,J,K,L)

Assumed sources [apart from ISM boundary condition] if any:
SOURCE=0.

Calculate Streaming Flux Vector:
Radial component of the streaming flux vector:
FLUX r(I,J,K,L)=-Drr(R(I),P(J),A(K),E(L),T)*UR(I,J,K,L)-
+ Dra(R(I),P(J),A(K),E(L),T)*UP(I,J,K,L)/(R(I)*SIN(P(J)))+
+ VDR(R(I)IP(J)IA(K)IE(L)[T)*U(IIJIKIL)+
+ Vsw(P(J))*(U(I,J,K,L)-(1./3.)*ADE(I,J,K,L))

Polar component of the streaming flux vector:
FLUX_p(I,J,K,L)=—Dpp(R(I),P(J),A(K),E(L),T)*UP(I,J,K,L)/R(I)+
+ VDP(R(I),P(J),A(K),E(L),T)*U(I,J,K,L)

Azimuthal component of the streaming flux vector:
FLUX a(I,J,K,L)=-Dar(R(I),P(J),A(K),E(L),T)*UR(I,J,K,L)-

+ Daa(R(I),P(J),A(K),E(L),T)*UA(I,J,K,L)/(R(I)*SIN(P(J)))+

Calculate Anisotropy Vector:
Radial component of the anisotropy vector:
IF(U(I,J,K,L) .NE.O0.) THEN
ANISOT r(I,J,K,L)=3.*FLUX r(I,J,K,L)/(4.*PI*U(I,J,K,L))

Polar component of the anisotropy vector:
ANISOT_p(I,J,K,L)=3.*FLUX_p(I,J,K,L)/(4.*PI*U(I,J,K,L))

Azimuthal component of the anisotropy vector:
ANISOT a(I,J,K,L)=3.*FLUX a(I,J,K,L)/(4.*PI*U(I,J,K,L))

END IF
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Assume modulation is negligible at heliospheric boundary,
and at the highest energy [100 GeV/Nucl.]: :
IF(I.EQ.1.AND.BC.EQ.’U0’) THEN
U(I,J,K,L)=0.
UT(1,J,K,L)=0.
ELSE IF(I.EQ.1.AND.BC.EQ.’SF’) THEN
UT(I,J,K,L)=~Vsw(P(J))*ADER(I,J,K,L)/3.
ELSE IF(I.EQ.NR) THEN
U(1,J,K,L)=U0(NR,J,K,L)
uT(I1,J,K,L)=0.
ELSE IF(L.EQ.NE) THEN
U(1,J,K,L)=U0(NR,J,K,L)
UT(I,J,K,L)=0.
ELSE
JP transport-equation in 3d at this T:

.......................................................................

.......................................................................

FLUX(I,J,K,L)=U(I,J,K,L)

CALL WARN(I,J,K,L,IC)
CALL DIAG(I,J,K,L,IC)

END DO

END DO
END DO
END DO

RETURN
END
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Gp=WO*SIN(2.*POLAR) / (1.+WO*SIN(PI/2.-POLAR) **2)
Note that Gp=0 if W0=0, i.e., latitude-indep. solar-velocity!
Gpp=1.+RADIAL* (Ws/Vsw (POLAR) ) *TILT (TIME) *

COS (AZIMUTH-RADIAL* (Wg/Vsw (POLAR) ). ) *Gp

POLARO=PI/2.+TILT(TIME) *SIN (AZIMUTH-RADIAL* (Ws/Vsw (POLAR) ) )

B0=SIGN (B0, COS(PI*TIME/22.))
VDO=VO* (2. *BETA*Pc) /(3. *ZNo*BO* (1.+G1**2) **2) *RADIAL
VD0O=VDO0*DIRAC (POLAR, POLARO)

VDR=VDSR (RADIAL, POLAR, AZIMUTH, ENERGY, TIME)
*SHEET (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) + VDO*G1*Gpp

RETURN
END

FUNCTION VDSP (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Polar component of the drift velocity
in a single sector

INCLUDE ‘CONSTS.MODEL’

GAMMA=1 . +ENERGY/EO

BETA=SQRT (1.-GAMMA**-2)
Pc=ANo*SQRT (ENERGY* (ENERGY+2 . *E0) )
G1=RADIAL* (Ws/Vsw (POLAR) ) *SIN (POLAR)
G2=RADIAL* (Ws/Vsw (POLAR) ) *COS (POLAR)

B0=SIGN (B0, COS(PI*TIME/22.))
VDO=VO* (2.*BETA*Pc) / (3.*ZNo*BO* (1.+G1**2) **2) *RADIAL

VDSP=VDO*G1* (2.+G1**2)

RETURN
END

FUNCTION VDP (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
POLAR component of the drift velocity
given the neutral magnetic sheet SHEET

INCLUDE 'CONSTS.MODEL'

GAMMA=1 . +ENERGY/EOQ

BETA=SQRT (1.-GAMMA**-2)
Pc=ANo*SQRT (ENERGY* (ENERGY+2. *E0) )
G1=RADIAL* (Ws/Vsw (POLAR) ) *SIN (POLAR)
G2=RADIAL* (Ws/Vsw (POLAR) ) *COS (POLAR)

POLARO=PI/2.+TILT (TIME) *SIN(AZIMUTH-RADIAL* (Ws/Vsw (POLAR) ) )

B0=SIGN (B0, COS (PI*TIME/22.))
VD0=VO* (2. *BETA*Pc) / (3.*ZNo*BO* (1.+G1**2) **2) *RADIAL
VD0=VDO*DIRAC (POLAR, POLARO)

VDP=VDSP (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
*SHEET (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) +
VDO*RADIAL*TILT(TIME)*COS(AZIMUTH RADIAL* Ws/sz(POLAR)))
Gl* (Ws/Vsw (POLAR) ) * (G1**-2-1,)
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RETURN
END

FUNCTION VDSA (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Azimuthal component of the drift velocity
in a single sector

INCLUDE 'CONSTS.MODEL'’

GAMMA=1 . +ENERGY/EO

BETA=SQRT (1.-GAMMA**-2)
Pc=ANo*SQRT (ENERGY* (ENERGY+2.*E0) )
G1=RADIAL* (Ws/Vsw (POLAR) ) *SIN (POLAR)
G2=RADIAL* (Ws/Vsw (POLAR) ) *COS (POLAR)

G=WO*SIN (POLAR) **2/(1.+WO*SIN(PI/2.-POLAR) **2)
Note that G=0 if W0=0, i.e., latitude-indep. solar-velocity!

B0O=SIGN(BO,COS(PI*TIME/22.))
VDO=VO* (2.*BETA*Pc) / (3.*ZNo*BO* (1.+G1**2) **2) *RADIAL

VDSA=VDO*G1*G2* (1.+2.*G)

RETURN
END

FUNCTION VDA (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Azimuthal component of the drift velocity
given the neutral magnetic sheet SHEET

INCLUDE 'CONSTS.MODEL"

GAMMA=1 . +ENERGY/EO

BETA=SQRT (1.-GAMMA**-2)
Pc=ANo*SQRT (ENERGY* (ENERGY+2. *EQ) )
G1=RADIAL* (Ws/Vsw (POLAR) ) *SIN (POLAR)
G2=RADIAL* (Ws/Vsw (POLAR) ) *COS (POLAR)

Gp=WO*SIN(2.*POLAR) /(1.+WO*SIN(PI/2.-POLAR) **2)
Note that Gp=0 if W0=0, i.e., latitude-indep. solar-velocity!
Gpp=1.+RADIAL* (Ws/Vsw (POLAR) ) * TILT(TIME) *

COS (AZIMUTH-RADIAL* (Ws/Vsw (POLAR) ) ) *Gp

POLARO=PI/2.+TILT (TIME) *SIN (AZIMUTH-RADIAL* (Ws/Vsw (POLAR) ) )
B0O=SIGN (B0, COS (PI*TIME/22.))

VDO=VO0* (2.*BETA*Pc) / (3. *ZNo*BO* (1.+G1**2) **2) *RADIAL
VD0=VDO*DIRAC (POLAR, POLARO)

VDA=VDSA (RADIAL, POLAR, AZIMUTH, ENERGY, TIME)
*SHEET (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) + VDO*Gpp

RETURN
END

FUNCTION VDS (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Drift speed in a single sector

VDS=SQRT (VDSR (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) **2
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FUNCTION ALPHA (ENERGY)
INCLUDE '‘CONSTS.MODEL’
ALPHA= (ENERGY+2.*EQ) / (ENERGY+EO)

RETURN
END

FUNCTION SPECTRUM (ENERGY)
INCLUDE ' CONSTS.MODEL'
CHOSEN SO THAT AT 100 GeV, THE LISM UNMODULATED

INTENSITY MATCHES THE OBSERVED INTENSITY, WHERE THE
MODULATION EFFECTS ARE ASSUMED NEGLIGIBLE!

CONST=1.23*%2,*1.E-3/1. | !for p; lism-exp=-2.65
CONST=1.5852*1.23%2.*1.E-3/19.018 !for He
CONST=1.5852%1.23%2.*1 . E-3/3651. tfor Fe

SPECTRUM=CONST* (ENERGY+EOQ) **EXPONENT

RETURN
END

FUNCTION Velocity (ENERGY)
To convert particle density to particle intensity:

INCLUDE ’‘CONSTS.MODEL’

GAMMA=1.+ENERGY/EO
BETA=SQRT (1.-GAMMA**-2)

Velocity=BETA*c

RETURN
END

FUNCTION Vsw (POLAR)

Solar-wind velocity profile - assumed radial but heliomagnetic
latitude dependent:

INCLUDE 'CONSTS.MODEL’

Vsw=Vsw_0* (1.+WO*SIN(PI/2.-POLAR) **2)

RETURN
END

FUNCTION Br (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Radial component of the solar magnetic field
in a single sector

INCLUDE ‘CONSTS.MODEL'

B0=SIGN(BO,COS (PI*TIME/22.))
Br=B0/RADIAL**2



QO aQOnNn 0

(@]

nnNnnN N

N0

a Q0N Q

Qanan Q

Q

RETURN
END

FUNCTION Bphi (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Azimuthal component of the solar magnetic field

" in a single sector

INCLUDE ‘CONSTS.MODEL’

B0O=SIGN (BO,COS(PI*TIME/22.))
Bphi=- (BO/RADIAL) * (Ws/Vsw (POLAR) ) *SIN (POLAR)

RETURN
END

FUNCTION B(RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Strength of the solar magnetic field
in a single sector - TIME-INDEPENDENT

B=SQRT (Br (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) **2+
Bphi (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) **2)

Note: polar component of B is identically zero!

RETURN
END

FUNCTION VDSR{(RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Radial component of the drift velocity
in a single sector

INCLUDE 'CONSTS.MODEL'’

GAMMA=1 . +ENERGY/EO

BETA=SQRT (1.-GAMMA**-2)
Pc=ANo*SQRT (ENERGY* (ENERGY+2 . *E0) )
G1=RADIAL* (Ws/Vsw (POLAR) ) *SIN (POLAR)
G2=RADIAL* (Ws/Vsw (POLAR) ) *COS (POLAR)

G=WO*SIN(POLAR) **2/(1.+WO*SIN(PI/2.-POLAR) **2)
Note that G=0 if W0=0, i.e., for a latitude-indep. solar velocity!

B0=SIGN(BO,COS(PI*TIME/22.))
VDO0=VO0* (2.*BETA*Pc) /(3 .*ZNo*BO* (1.+G1l**2) **2) *RADIAL
VDSR=-VDO*G2* (1.+G* (1.-G1**2))

RETURN
END

FUNCTION VDR (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Radial component of the drift velocity
given the neutral magnetic sheet SHEET

INCLUDE ’CONSTS.MODEL’

GAMMA=1. +ENERGY/EOQ

BETA=SQRT (1.-GAMMA**-2)
Pc=ANo*SQRT (ENERGY* (ENERGY+2.*E0) )
G1=RADIAL* (Ws/Vsw(POLAR) ) *SIN (POLAR)
G2=RADIAL* (Ws/Vsw (POLAR) ) *COS (POLAR)
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+ VDSP (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) **2
+ VDSA (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) **2)

RETURN
END

FUNCTION VD(RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Drift speed given the neutral magnetic sheet SHEET

VD=SQRT ( VDR (RADIAL, POLAR,AZIMUTH,ENERGY, TIME) **2
+ VDP (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) **2
+ VDA (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) **2)

RETURN
END

FUNCTION Dt (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)

Tangential component of the symmetric diffusion tensor

kappa (in the local solar-wind frame)
INCLUDE ‘CONSTS.MODEL’

GAMMA=1 . +ENERGY/EO

BETA=SQRT (1.-GAMMA**-2)
Pc=ANoO*SQRT (ENERGY* (ENERGY+2.*EQ) )
RIGIDITY=Pc/ZNo

Rel. strength of local field to that at Earth’s orbit:

BRel=B(1.,PI/2.,AZIMUTH, ENERGY, TIME) /
B (RADIAL, POLAR, AZIMUTH, ENERGY, TIME)

IF(RADIAL.LE.1.) THEN
IF (RIGIDITY.LT.1.) THEN
Dt=D0* (RIGIDITY) ** (2. -EXP) *BETA
ELSE
Dt=0.3*D0* (RIGIDITY) **2*BETA
END IF
ELSE
IF (RIGIDITY.LT.1.) THEN
Dt=D0* (RIGIDITY) ** (2. -EXP) *BETA*BRel
ELSE
Dt=0.3*DO* (RIGIDITY) **2*BETA*BRel
END IF
END IF

RETURN
END

FUNCTION Dn (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Normal component of the symmetric diffusion tensor
kappa (in the local solar-wind frame)

INCLUDE ‘' CONSTS.MODEL’
Dn=ETA*Dt(RADIAL,PQLAR,AZIMUTH,ENERGY,TIME)

RETURN
END

FUNCTION Drr (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
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Kappa_rr component of the symmetric diffusion tensor kappa
(in the heliocentric polar spherical coordinate system)

INCLUDE ‘'CONSTS.MODEL’

The angle between the spiral field line and the radial solar-wind
direction:
PSI=ATAN (RADIAL*Ws/Vsw (POLAR) )

Drr=(COS (PSI)) **2*Dt (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) +
(SIN(PSI) ) **2*Dn (RADIAL, POLAR, AZIMUTH, ENERGY, TIME)

RETURN
END

FUNCTION Drr_r (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Radial gradient of the kappa_rr component of the symmetrlc
diffusion tensor kappa -

INCLUDE 'CONSTS.MODEL’

The angle between the spiral field line and the radial solar-wind
direction:

ZETA=RADIAL*Ws/Vsw (POLAR)

PSI=ATAN (ZETA)

TERMO=2. - (Bphi (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) /

B (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) ) **2
TERM1=TERMO* (COS (PSI) **2+ETA*SIN (PSI) **2) /RADIAL
TERM2= (Ws/Vsw (POLAR) ) * (ETA-1.) *SIN(2.*PSI) /(1.+ZETA**2)

IF(RADIAL.LE.1.) THEN

Drr_ r=Dt (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) * (0. +TERM2)
ELSE

Drr_ r=Dt (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) * (TERM1+TERM2)
END IF

RETURN
END

FUNCTION Dpp (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Kappa_thetatheta component of the symmetric diffusion tensor
kappa

INCLUDE ‘CONSTS.MODEL’

Note because kappa is symmetric; Dpr=Drp=Dpa=Dap=0.,
these terms are included as drift velocity terms!

Dpp=Dn (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)

RETURN
END

FUNCTION Dpp p (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) '
Polar gradient of the kappa_thetethat component of the symmetrlc
diffusion tensor kappa

INCLUDE ’‘CONSTS.MODEL’
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B0O=SIGN (B0, COS(PI*TIME/22.))
TERM1l=-.5%* (BO* (Ws/Vsw (POLAR) ) /RADIAL) **2*SIN (2. *POLAR)
TERM2=B (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) **2

G=WO*SIN (POLAR) **2/ (1. +WO*SIN(PI/2.-POLAR) **2)
Note that G=0 if W0=0, i.e., latitude-indep. solar-velocity!
TERM3=1.+2.*G

IF(RADIAL.LE.1.) THEN

Dpp_p=0.
ELSE

Dpp _p= =Dn (RADIAL, POLAR, AZIMUTH, ENERGY, TIME)*TERMl*TERMB/TERM2
END IF

RETURN
END

FUNCTION Daa(RADIAL,POLAR,AZIMUTH,ENERGY,TIME)

kappa_phiphi component of the symmetric diffusion tensor
kappa

Note: Daa_a [azimuthal gradient of Daa] is identically zero!

INCLUDE ‘CONSTS.MODEL’

The angle between the spiral field line and the radial solar-wind

direction:
PSI=ATAN (RADIAL*Ws/Vsw (POLAR) )

Daa=COS (PSI) **2+Dn (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) +
SIN(PSI) **2*Dt (RADIAL, POLAR, AZIMUTH, ENERGY, TIME)

RETURN
END

FUNCTION Dra (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
kappa_rphi component of the symmetric diffusion tensor
kappa

INCLUDE ’‘CONSTS.MODEL’

The angle between the spiral field line and the radial soclar-wind

direction:
PSI=ATAN (RADIAL*Ws/Vsw (POLAR) )

Dra=(Dn (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) -
Dt (RADIAL, POLAR,AZIMUTH, ENERGY, TIME) ) *
COS (PSI) *SIN(PSI)

RETURN
END

FUNCTION Dra_r (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Radial gradient of the kappa rphi component of the symmetrlc
diffusion tensor kappa

INCLUDE ‘CONSTS.MODEL'

The angle between the spiral field line and the radial solar-wind

direction:
ZETA= RADIAL*WS/sz POLAR)
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PSI=ATAN (ZETA)

TERMO=2. - (Bphi (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) /

B (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) ) **2
TERM1=TERMO* (ETA-1.) *SIN(2.*PSI)/(2.*RADIAL)
TERM2= (ETA-1.) * (Ws/Vsw (POLAR) ) *COS (2. *PSI)/ (1.+ZETA**2)

IF (RADIAL.LE.1.) THEN

Dra_r=Dt (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) * (0.  +TERM2)
ELSE ' :

Dra_r=Dt (RADIAL, POLAR, AZIMUTH, ENERGY, TIME) * (TERM1+TERM2)
END IF _

RETURN
END

FUNCTION Dar (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
kappa_phir component of the symmetric diffusion tensor
kappa

INCLUDE ’‘'CONSTS.MODEL’

Note because kappa is symmetric; Dar=Dra

Dar=Dra (RADIAL, POLAR, AZIMUTH, ENERGY, TIME)

RETURN
END

FUNCTION Dar_r (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)

Radial gradient of the kappa_phir component of the symmetric

diffusion tensor kappa
INCLUDE ‘CONSTS.MODEL’
Note because kappa is symmetric; Dar_r=Dra_r
Dar_r=Dra_r (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)

RETURN
END

FUNCTION SHEET (RADIAL, POLAR,AZIMUTH, ENERGY, TIME)
Magnetic current sheet co-rotating with the Sun

INCLUDE ’'CONSTS.MODEL’
POLARO=PI/2.+TILT(TIME) *SIN (AZIMUTH+RADIAL* (Ws/Vsw (POLAR) ) )
SHEET=1.-2.*STEP (POLAR, POLARO)

RETURN
END

FUNCTION TILT (TIME)

Tilt angle of the Magnetic neutral sheet

at the Sun. TILT is assumed to correlate
with the 11-yr sunspot cycle, i.e.,

TILT is maximum at solar sunspot maximum and
TILT is minimum at solar sunspot minimum.
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INCLUDE ‘CONSTS.MODEL’

TILT=TILTO*(1.+.5%COS(2.*PI*TIME/11.))

Note: With + in above instead of -, TILT would correspond to
Solar maximum at t=0!

RETURN

END

FUNCTION STEP(X,Y)

Approximated Heaviside step-function:
for large INDEX

DATA INDEX/31/
STEP=.5* (1.+TANH (INDEX* (X-Y))) -

RETURN
END

FUNCTION DIRAC(X,Y)

Approximated Dirac delta-function:
for large INDEX

DATA INDEX/31/

DIRAC=1./COSH (INDEX* (X-Y) ) **2
DIRAC=exp (- (INDEX* (X-Y) ) **2)

RETURN
END
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SUBROUTINE DSS_4d (XL, XU,N1,N2,N3,N4,ND,U4D, UX4D, V)

Thié is a straight-forward extension of DSS036 to 4 independent
variables. Written by A. F. Barghouty - July 1996.

SUBROUTINE DSS_4d COMPUTES A PARTIAL DERIVATIVE OVER A FOUR-
DIMENSIONAL DOMAIN USING EITHER FIVE-POINT CENTERED OR FIVE-
POINT BIASED UPWIND APPROXIMATIONS. 1IT IS INTENDED PRIMARILY
FOR THE NUMERICAL METHOD OF LINES (NMOL) NUMERICAL INTEGRATION
OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) IN THREE DIMENSIONS.

SUBROUTINE DSS_4d IS CALLED IN ESSENTIALLY THE SAME WAY AS
SUBROUTINE DSS036. THE ONLY DIFFERENCE IS AN ADDITIONAL ARGU-
MENT, N4, TO DEFINE THE NUMBER OF GRID POINTS IN THE FOURTH
DIMENSION. THE COMMENTS IN DSS036 SHOULD THEREFORE BE USEFUL
IN UNDERSTANDING THE OPERATION OF DSS 4D. 1IN PARTICULAR,
DSS036 CALLS SUBROUTINES DSS004 AND DSS020 TO IMPLEMENT THE
FIVE-POINT CENTERED APPROXIMATION AND FIVE-POINT BIASED UPWIND
APPROXIMATION OF. THE PARTIAL DERIAVTIVE, RESPECTIVELY.

ARGUMENT LIST

XL LOWER VALUE OF THE INDEPENDENT VARIABLE FOR WHICH
THE PARTIAL DERIVATIVE IS TO BE COMPUTED (INPUT)

XU UPPER VALUE OF THE INDEPENDENT VARIABLE FOR WHICH
THE PARTIAL DERIVATIVE IS TO BE COMPUTED (INPUT)

N1 NUMBER OF GRID POINTS FOR THE FIRST INDEPENDENT
VARIABLE (INPUT)

N2 NUMBER OF GRID POINTS FOR THE SECOND INDEPENDENT
VARIABLE (INPUT)

N3 NUMBER OF GRID POINTS FOR THE THIRD INDEPENDENT
VARIABLE (INPUT)

N4 NUMBER OF GRID POINTS FOR THE FOURTH INDEPENDENT
VARIABLE (INPUT)

ND NUMBER OF THE INDEPENDENT VARIABLE FOR WHICH THE
PARTIAL DERIVATIVE IS TO BE COMPUTED (INPUT)

U4D FOUR-DIMENSIONAL ARRAY CONTAINING THE DEPENDENT

VARIABLE WHICH IS TO BE DIFFERENTIATED WITH RESPECT

TO INDEPENDENT VARIABLE ND (INPUT)

UX4D FOUR-DIMENSIONAL ARRAY CONTAINING THE PARTIAL DERI-
VATIVE OF THE DEPENDENT VARIABLE WITH RESPECT TO
INDEPENDENT VARIABLE ND (OUTPUT)

\Y VARIABLE TO SELECT EITHER THE FIVE-POINT CENTERED
OR FIVE-POINT BIASED UPWIND APPROXIMATION FOR THE
" PARTIAL DERIVATIVE. V EQ 0 CALLS THE FIVE-POINT

CENTERED APPROXIMATION. V NE 0 CALLS THE FIVEFPOINT

BIASED UPWIND APPROXIMATION (INPUT)

THE FOLLOWING FOUR-DIMENSIONAL ARRAYS CONTAIN THE DEPENDENT
VARIABLE (U4D) AND ITS PARTIAL DERIVATIVE (UX4D)
DIMENSION U4D(N1,N2,N3,N4), UX4D (N1,N2,N3,N4)
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THE .FOLLOWING ONE-DIMENSIONAL ARRAYS CONTAIN THE DEPENDENT
VARIABLE (UlD) AND ITS PARTIAL DERIVATIVE (UX1D). 1IN EACH

CASE, ONE OF THE INDEPENDENT VARIABLES IS CONSTANT AND THE
OTHER TWO INDEPENDENT VARIABLES VARY OVER THEIR TOTAL INTERVALS.
THESE ARRAYS ARE USED FOR TEMPORARY STORAGE IN CALLING THE
ONE-DIMENSIONAL ROUTINES DSS004 AND DSS020.

NOTE THAT THE ARRAYS HAVE ABSOLUTE DIMENSIONS AND MAY THERE-

FORE HAVE TO BE INCREASED IN SIZE. HOWEVER, WITH A SIZE

OF 51, THE FOUR-DIMENSIONAL PROBLEM COULD HAVE A GRID OF

51 X 51 X 51 X 51 POINTS, THEREBY GENERATING AN APPROXIMATING ODE

SYSTEM WITH A MULTIPLE OF 51 X 51X 51 X 51 EQUATIONS, DEPENDING ON

THE NUMBER OF SIMULTANEOUS PDES. THIS IS A VERY LARGE ODE
PROBLEM, AND THEREFORE THE FOLLOWING ABSOLUTE DIMENSIONING
IS CONSIDERED ADEQUATE FOR MOST PROBLEMS.

DIMENSION UlD(51), UX1D(51)

GO TO STATEMENT 2 IF THE PARTIAL DERIVATIVE IS TO BE COMPUTED
WITH RESPECT TO THE SECOND INDEPENDENT VARIABLE
IF(ND.EQ.2)GO TO 2

GO TO STATEMENT 3 IF THE PARTIAL DEkIVATIVE IS TO BE COMPUTED
WITH RESPECT TO THE THIRD INDEPENDENT VARIABLE
IF(ND.EQ.3)GO TO 3

GO TO STATEMENT 4 IF THE PARTIAL DERIVATIVE IS TO BE COMPUTED
WITH RESPECT TO THE FOURTH INDEPENDENT VARIABLE '
IF(ND.EQ.4)GO TO 4
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THE PARTIAL DERIVATIVE IS TO BE COMPUTED WITH RESPECT TO THE
FIRST INDEPENDENT VARIABLE DEFINED OVER AN INTERVAL CONSISTING

OF N1 GRID POINTS. COMPUTE THE PARTIAL DERIVATIVE AT THE N1 X

N2 X N3 X N4 GRID POINTS VIA NESTED DO LOOPS 09, 10, 11, 12 AND 13
IF(N1.EQ.1) RETURN

DO 10 J=1,N2

DO 11 K=1,N3

DO 09 L=1,N4

TRANSFER THE DEPENDENT VARIABLE IN THE THREE-DIMENSIONAL ARRAY U3D
TO THE ONE-DIMENSIONAL ARRAY UlD SO THAT SUBROUTINES DSS004 AND
DSS020 CAN BE USED TO CALCULATE THE PARTIAL DERIVATIVE

DO 12 I=1,N1

UlD(I)=U4D(I,J,K,L)

CONTINUE

IF V EQ 0, A FIVE-POINT CENTERED APPROXIMATION IS USED FOR THE
PARTIAL DERIVATIVE
IF(V.EQ.0.)CALL DSS004 (XL, XU,N1,U1D, UX1D)

IF VNE 0, A FIVE-POINT BIASED UPWIND APPROXIMATION IS USED FOR
THE PARTIAL DERIVATIVE ‘ .
IF(V.NE.O.)CALL DSS020 (XL, XU,N1,U1D,UX1D,V) ’

RETURN THE PARTIAL DERIVATIVE IN THE ONE-DIMENSIONAL ARRAY UX1D
TO THE FOUR-DIMENSIONAL ARRAY UX4D
DO 13 I=1,N1
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UX4D(I,J,K,L)=UX1D(I)
CONTINUE

THE PARTIAL DERIVATIVE AT PARTICULAR VALUES OF THE SECOND,
THIRD AND FOURTH INDEPENDENT VARIABLE HAS BEEN CALCULATED.
REPEAT THE CALCULATION FOR THE OTHER VALUES OF THE SECOND,
THIRD, AND FOURTH INDEPENDENT VARIABLES ‘
CONTINUE

CONTINUE

CONTINUE

THE PARTIAL DERIVATIVE HAS BEEN CALCULATED OVER THE ENTIRE N1 X
N2 X N3 X N4 GRID. THEREFORE RETURN TO THE CALLING PROGRAM WITH
THE PARTIAL DERIVATIVE IN THE FOUR-DIMENSIONAL ARRAY UX4D

RETURN :
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THE PARTIAL DERIVATIVE IS TO BE COMPUTED WITH RESPECT TO THE
SECOND INDEPENDENT VARIABLE DEFINED OVER AN INTERVAL CONSISTING
OF N2 GRID POINTS. COMPUTE THE PARTIAL DERIVATIVE AT THE N1 X

N2 X N3 X N4 GRID POINTS VIA NESTED DO LOOPS 19, 20, 21, 22 AND 23
IF(N2.EQ.1) RETURN

DO 20 I=1,N1

DO 21 K=1,N3

DO 19 L=1,N4

TRANSFER THE DEPENDENT VARIABLE IN THE FOUR-DIMENSIONAL ARRAY U4D
TO THE ONE-DIMENSIONAL ARRAY UlD SO THAT SUBROUTINES DSS004 AND
DSS020 CAN BE USED TO CALCULATE THE PARTIAL DERIVATIVE

DO 22 J=1,N2

UlD(J)=U4D(I,J,K,L)

CONTINUE

IF V EQ 0, A FIVE-POINT CENTERED APPROXIMATION IS USED FOR THE
PARTIAL DERIVATIVE
IF(V.EQ.0.)CALL DSS004 (XL,XU,N2,UlD,UX1D)

IF V NE 0, A FIVE-POINT BIASED UPWIND APPROXIMATION IS USED FOR
THE PARTIAL DERIVATIVE
IF(V.NE.O.)CALL DSS020 (XL, XU,N2,U1D, UX1D, V)

RETURN THE PARTIAL DERIVATIVE IN THE ONE-DIMENSIONAL ARRAY UX1D
TO THE FOUR-DIMENSIONAL ARRAY UX4D

DO 23 J=1,N2

UX4D(I,J,K,L)=UX1D(J)

CONTINUE

THE PARTIAL DERIVATIVE AT PARTICULAR VALUES OF THE FIRST,
THIRD, AND FOURTH INDEPENDENT VARIABLE HAS BEEN CALCULATED.
REPEAT THE CALCULATION FOR THE OTHER VALUES OF THE FIRST,
THIRD, AND FOURTH INDEPENDENT VARIABLES

CONTINUE

CONTINUE

CONTINUE

THE PARTIAL DERIVATIVE HAS BEEN CALCULATED OVER THE ENTIRE N1 X
N2 X N3 X N4 GRID. THEREFORE RETURN TO THE CALLING PROGRAM WITH
THE PARTIAL DERIVATIVE IN THE FOUR-DIMENSIONAL ARRAY UX4D

RETURN
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THE PARTIAL DERIVATIVE IS TO BE COMPUTED WITH RESPECT TO THE
THIRD INDEPENDENT VARIABLE DEFINED OVER AN INTERVAL CONSISTING

OF N3 GRID POINTS. COMPUTE THE PARTIAL DERIVATIVE AT THE N1 X

N2 X N3 X N4 GRID POINTS VIA NESTED DO LOOPS 29, 30, 31, 32 AND 33
IF(N3.EQ.1) RETURN

DO 30 I=1,N1

DO 31 J=1,N2 h

DO 29 L=1,N4

TRANSFER THE DEPENDENT VARIABLE IN THE FOUR-DIMENSIONAL ARRAY U4D
TO THE ONE-DIMENSIONAL ARRAY UlD SO THAT SUBROUTINES DSS004 AND
DSS020 CAN BE USED TO CALCULATE THE PARTIAL DERIVATIVE

DO 32 K=1,N3

UlD(K)=U4D(I,J,K,L)

CONTINUE

IF V EQ 0, A FIVE-POINT CENTERED APPROXIMATION IS USED FOR THE
PARTIAL DERIVATIVE
IF(V.EQ.0.)CALL DSS004 (XL, XU,N3,UlD, UX1D)

IF V NE 0, A FIVE-POINT BIASED UPWIND APPROXIMATION IS USED FOR
THE PARTIAL DERIVATIVE
IF(V.NE.O.)CALL DSS020 (XL, XU,N3,U1D,UX1D, V)

RETURN THE PARTIAL DERIVATIVE IN THE ONE-DIMENSIONAL ARRAY UX1D
TO THE FOUR-DIMENSIONAL ARRAY UX4D

DO 33 K=1,N3

UX4D(I,J,K,L)=UX1D(K)

CONTINUE

THE PARTIAL DERIVATIVE AT PARTICULAR VALUES OF THE FIRST,
SECOND, AND FOURTH INDEPENDENT VARIABLE HAS BEEN CALCULATED.
REPEAT THE CALCULATION FOR THE OTHER VALUES OF THE FIRST,
SECOND AND FOURTH INDEPENDENT VARIABLES

CONT INUE

CONTINUE

CONTINUE

THE PARTIAL DERIVATIVE HAS BEEN CALCULATED OVER THE ENTIRE N1 X

N2 X N3 X N4 GRID. THEREFORE RETURN TO THE CALLING PROGRAM WITH THE

PARTIAL DERIVATIVE IN THE FOUR-DIMENSIONAL ARRAY UX4D
RETURN
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THE PARTIAL DERIVATIVE IS TO BE COMPUTED WITH RESPECT TO THE
FOURTH INDEPENDENT VARIABLE DEFINED OVER AN INTERVAL CONSISTING
OF N4 GRID POINTS. COCMPUTE THE PARTIAL DERIVATIVE AT THE N1 X

N2 X N3 X N4 GRID POINTS VIA NESTED DO LOOPS 40, 41, 42, 43 AND 44
IF(N4.EQ.1) RETURN

DO 40 I=1,N1

DO 41 J=1,N2

DO 42 K=1,N3

TRANSFER THE DEPENDENT VARIABLE IN THE FOUR-DIMENSIONAL ARRAY U4D
TO THE ONE-DIMENSIONAL ARRAY UlD SO THAT SUBROUTINES DSS004 AND
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DSS020 CAN BE USED TO CALCULATE THE PARTIAL DERIVATIVE
DO 43 L=1,N4

UlD(L)=U4D(I,J,K, L)

CONTINUE

IF V EQ 0, A FIVE-POINT CENTERED APPROXIMATION IS USED FOR THE
PARTIAIL DERIVATIVE
IF(V.EQ.0.)CALL DSS004 (XL, XU,N4,U1D, UX1D)

IF V NE 0, A FIVE-POINT BIASED UPWIND APPROXIMATION IS USED FOR
THE PARTIAL DERIVATIVE
IF(V.NE.O.)CALL DSS020 (XL, XU,N4,U1D,UX1D, V)

RETURN THE PARTIAL DERIVATIVE IN THE ONE-DIMENSIONAL ARRAY UX1D
TO THE FOUR-DIMENSIONAL ARRAY UX4D

DO 44 L=1,N4

UX4D(I,J,K,L)=UX1D(L)

CONTINUE

THE PARTIAL DERIVATIVE AT PARTICULAR VALUES OF THE FIRST,
SECOND, AND THIRD INDEPENDENT VARIABLE HAS BEEN CALCULATED.
REPEAT THE CALCULATION FOR THE OTHER VALUES OF THE FIRST,
SECOND AND THIRD INDEPENDENT VARIABLES

CONTINUE

CONTINUE

CONTINUE

THE PARTIAL DERIVATIVE HAS BEEN CALCULATED OVER THE ENTIRE N1 X

N2 X N3 X N4 GRID. THEREFORE RETURN TO THE CALLING PROGRAM WITH THE

PARTIAL DERIVATIVE IN THE FOUR-DIMENSIONAL ARRAY UX4D
RETURN
END

SUBROUTINE DSS004 (XL, XU, N, U, UX)

SUBROUTINE DSS004 COMPUTES THE FIRST DERIVATIVE, U , OF A

: X
VARIABLE U OVER THE SPATIAL DOMAIN XL LE X LE XU FROM CLASSICAL
FIVE-POINT, FOURTH-ORDER FINITE DIFFERENCE APPROXIMATIONS

ARGUMENT LIST

XL LOWER BOUNDARY VALUE OF X (INPUT)
XU UPPER BOUNDARY VALUE OF X (INPUT)
N NUMBER OF GRID POINTS IN THE X DOMAIN INCLUDING THE

BOUNDARY POINTS (INPUT)

U ONE-DIMENSIONAL ARRAY CONTAINING THE VALUES OF U AT
THE N GRID POINT POINTS FOR WHICH THE DERIVATIVE IS
TO BE COMPUTED (INPUT)

UX ONE-DIMENSIONAL ARRAY CONTAINING THE NUMERICAL °
VALUES OF THE DERIVATIVES OF U AT THE N GRID POINTS
(OUTPUT) ‘ ‘

THE MATHEMATICAL DETAILS OF THE FOLLOWING TAYLOR SERIES (OR
POLYNOMIALS) ARE GIVEN IN SUBROUTINE DSS002.
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FIVE-POINT FORMULAS

(1) LEFT END, POINT:

A(U2 = Ul + U1l ( DX) +
X 1F
5
+ Ul ( DX) +
5X ©5F
B(U3 = Ul + U1 (2DX) +
X iF
5
+ U1 (2DX) +
5X §5F
C(U4 = Ul + U1 (3DX) +
X 1F
5
+ Ul (3DX) +
5X ©5F
D(US5 = Ul + U1 (4DX) +
X 1F
. 5
+ Ul (4DX) +
5X ©5F

CONSTANTS A, B, C AND D
OF THE Ul TERMS SUM TO
X
Ul AND Ul TERMS SUM
3X 4X
A + 2B + 3C + 4D
A + 4B + 9C + 16D
A + 8B + 27C + 64D

A + 16B + 81C + 256D

]

I =1
2 3 4
U1 ( DX) + Ul ( DX) + U1 ( DX)
2X 2F 3X 3F 4X A4F
6 7
Ul “( DX) + Ul ( DX) + ..))
6X 6F 7X 7F
2 3 4
Ul (2DX) + Ul (2DX) + Ul (2DX)
2X 2F 3X 3F 4X 4F
6 7
Ul (2DX) + U1l (2DX) + )
6X 6F 7X 7F
2 3 4
Ul (3DX) + Ul (3DX) + Ul (3DX)
2X 2F 3X 3F 4X A4F
6 7
Ul (3DX) + U1 (3DX) + )
6X ©6F 7X 7F
2 3 4
U1 (4DX) + Ul (4DX) + Ul (4DX)
2X 2F 3X 3F 4X A4F
6 7
Ul (4DX) + Ul (4DX) + ...)
6X 6F 7X 7F

ARE SELECTED SO THAT THE COEFFICIENTS
ONE AND THE COEFFICIENTS OF THE Ul ,
TO ZERO °X

1

0

0

0

SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

4X

TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION

X

4

Ul = (1/12DX) (-25U1 + 48U2 - 36U3 + 16U4 - 3U5) + O(DX ) (1)

X

(2) INTERIOR POINT,

I =2
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. 2 3 4
A(Ul = U2 + U2 (-DX) + U2 (-DX) + U2 (-DX) + U2 (-DX)
X 1F 2X 2F 3X 3F 4X 4F
5 6 7
+ U2 (-DX) + U2 (-DX) + U2 (-DX) + ...)
5X 5F 6X 6F 7X 7F
- 2 3 4
B(U3 = U2 + U2 ( DX) + U2 (DX) + U2 (DX) + U2 ( DX)
X 1F 2X 2F° 3X 3F 4X 4F
5 6 7
+ U2 (DX) + U2 (DX) + U2 (DX) + )
5X ©5F 6X 6F 7X 7F
2 3 4
C(U4 = U2 + U2 (2DX) + U2 (2DX) + U2 (2DX) + U2 (2DX)
X 1F 2X 2F 3X 3F 4X 4F
5 6 7
+ U2 (2DX) + U2 (2DX) + U2 (2DX) + ...)
5X 5F 6X 6F 7X 7F
2 3 4
D(US = U2 + U2 (3DX) + U2 (3DX) + U2 (3DX) + U2 (3DX)
X 1F 2X 2F 3X 3F 4X 4F
5 6 7
+ U2 (3DX) + U2 (3DX) + U2 (3DX) + ...)
5X ©5F 6X 6F 7X 7F

-A + B+ 20+ 3D =1

0

A+ B + 4C + 9D

-A + B + 8C + 27D 0

A + B + 16C + 81D

0

SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

4X
TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
: 4
U2 = (1/12DX) (-3U1 - 10U2 + 18U3 - 6U4 + U5) + O(DX ) (2)
X
(3) INTERIOR POINT I, I NE 2, N-1
2 3
A(UI-2 = UI + UI (-2DX) + UI (-2DX) + UI (-2DX)
X 1F 2X 2F 3X 3F
4 5 ' 6
+ UI (-2DX) + UI (-2DX) + UI (-2DX) + ...)
4X 4F 5X 5F 6X 6F
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B(UI-1

C(UI+1

D(UI+2

-2A -
44 +
_8A -

16A +

= UI + UI ( -DX) + UI ( -DX) + UI ( -DX)
X 1F 2X 2F 3X 3F
4 5 6
+ UI { -DX) + UI ( -DX) + UI ( -DX) + o)
4X 4F 5X 5F 6X 6eF
2 3
= UI + UI ( DX) + UI ( DX) + UI { DX)
X 1F 2X 2F 3X 3F
4 5 . 6
+ UI ( DX) + UI ( DX) + UI { DX) + .. .)
4X 4F 5X SF 6X 6F
2 3
= UI + UI ( 2DX) + UI ( 2DX) + UI ( 2DX)
X 1F 2X 2F 3X 3F
4 5 6
+ UI ( 2DX) + UI ( 2DX) + UI ( 2DX) + ...)
4X 4F 5X 5F 6X 6F

B + C+ 2D =1

B + C+ 4D =0
B + C+ 8D =0
B + C + 16D = 0

SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

TERMS,

Ul =
X

(4)

4x
FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
4
(1/12DX) (UI-2 - 8UI-1 + OUI + 8UI+1 - UI+2) + O(DX ) (3)

INTERIOR POINT, I = N-1

2 3
= UN-1 + UN-1 (-3DX) + UN-1 (-3DX) + UN-1 (-3DX)
X 1F 2X 2F 3X  3F
4 5 6
+ UN-1 (-3DX) + UN-1 (-3DX) + UN-1 (-3DX) +
4X  4F 5X SF 6X 6F
2 3
= UN-1 + UN-1 (-2DX) + UN-1 (-2DX) + UN-1 (-2DX)
X 1F 2X  2F 3X  3F
_ 4 5 ‘ 6
+ UN-1 (-2DX) + UN-1 (-2DX) + UN-1 (-2DX) +
4X  4F 5X SF 6X  6F
2 3
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C(UN-2 = UN-1 + UN-1 ( -DX) + UN-1 (- -X) + UN-1 ( -DX)

X 1F 2X 2F 3X 3F
4 5 6
+ UN-1 ( -DX) + UN-1 ( -DX) + UN-1 ( -DX) +
4X 4F 5X 5F 6X 6F
2 3
D (UN = UN-1 + UN-1 ( DX) + UN-1 ( DX) + UN-1 ( DX)
X 1F - 2X 2F 3X 3F
4 5 6
+ UN-1 ( DX) + UN-1 ( DX) + UN-1 ( DX) +
4X 4F 5X SF 6X 6F

-3A - 2B - C + D
9A + 4B + C + D=20

-27A - 8B - C + D
81A + 16B + C + D=20

SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

. 4X
TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
4
UN-1 = (1/12DX) (-UN-4 + 6UN-3 - 18UN-2 + 10UN-1 + 3UN) + O(DX )
X
(4)

(5) RIGHT END, POINT I = N

2 3
A(UN-4 = UN + UN (-4DX) + UN (-4DX) + UN (-4DX)
X 1F 2X 2F 3X 3F
4 5 6
+ UN (-4DX) + UN (-4DX) + UN (-4DX) + ...)
4X 4F 5X 5F 6X 6F
2 3
B(UN-3 = UN + UN (-3DX) + UN (-3DX) + UN (-3DX)
X 1F 2X 2F 3X 3F
4 ' 5 6
+ UN (-3DX) + UN (-3DX) + UN (-3DX) =+ ...)
4X 4F 5X 5F 6X 6F
2 3
C(UN-2 = UN + UN (-2DX) + UN (-2DX) + UN (-2DX)
X 1F 2X 2F 3X 3F
4 5 6
+ UN (-2DX) + UN (-2DX) + UN (-2DX) + ...)
4X 4F 5X 5F 6X 6F
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D(UN-1 = UN + UN ( -DX) + UN ( -DX) + UN ( -DX)

X 1F 2X 2F 3X 3F
4 5 6
+ UN ( -DX) + UN ( -DX) + UN ( -DX) + ...)
4X 4F 5X 5F 6X 6F
-4A - 3B - 2C - D=1

16A + 9B + 4C + = 0 -

-64A - 27B - 8C

D
D=20
256A + B1B + 16C + D=20

SIMULTANEOUS SOLUTION FOR A, B, C AND D FOLLOWED BY THE SOLU-
TION OF THE PRECEDING TAYLOR SERIES, TRUNCATED AFTER THE U

44X
TERMS, FOR Ul GIVES THE FOLLOWING FIVE-POINT APPROXIMATION
X
4
UN = (1/12DX) (3UN-4 - 16UN-3 + 36UN-2 - 48UN-1 + 25UN) + O(DX )
X
(5)

THE WEIGHTING COEFFICIENTS FOR EQUATIONS (1) TO (5) CAN BE
SUMMARIZED AS

-25 48 -36 16 -3

-3 -10 18 -6 1
1/12 1 -8 0 8 -1
-1 6 ~-18 10 3

3 -1e6 36 -48 25

WHICH ARE THE COEFFICIENTS REPORTED BY BICKLEY FOR N = 4, M =
i, p=20, 1, 2, 3, 4 (BICKLEY, W. G., FORMULAE FOR NUMERICAL
DIFFERENTIATION, MATH. GAZ., VOL. 25, 1941. NOTE - THE BICKLEY
COEFFICIENTS HAVE BEEN DIVIDED BY A COMMON FACTOR OF TWO).

EQUATIONS (1) TO (5) CAN NOW BE PROGRAMMED TO GENERATE THE

DERIVATIVE U (X) OF FUNCTION U(X) (ARGUMENTS U AND UX OF SUB-
X

ROUTINE DSS004 RESPECTIVELY) .

DIMENSION U(N) ,UX(N)

COMPUTE THE SPATIAL INCREMENT
DX= (XU-XL) /FLOAT (N-1)
R4FDX=1./(12.*DX)

NM2=N-2

EQUATION (1) (NOTE - THE RHS OF EQUATIONS (1), (2), (3), (4)
AND (5) HAVE BEEN FORMATTED SO THAT THE NUMERICAL WEIGHTING
COEFFICIENTS CAN BE MORE EASILY ASSOCIATED WITH THE BICKLEY
MATRIX ABOVE)

UX( 1)=R4FDX*
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1( -25.*U( 1) +48.*U( 2) -36.*U( 3) +16.*U( 4) -3.*U( 5))

EQUATION (2)
UX( 2)=R4FDX*
1( =-3.*U( 1) -10.*U( 2) +18.*U( 3) -6.*%U( 4) +1.*U( 5))

EQUATION (3)
DO 1 I=3,NM2
UX( 1I)=R4FDX*

1( +1.*U(I-2) -8.*U(I-1) +0.*U( I) +8.*U(I+1l) -1.*U(I+2))

CONTINUE

EQUATION (4)
UX (N-1) =R4FDX*

1( -1.*U(N-4) +6.*U(N-3) -18.*U(N-2) +10.*U(N-1) +3.*U( N))

EQUATION (5)
UX( N)=R4FDX*

1( 3.*U(N-4) -16.*U(N-3) +36.*U(N-2) -48.*U(N-1) +25.*U( N))

RETURN
END

SUBROUTINE DSS020 (XL, XU,N,U,UX,V)

SUBROUTINE DSS020 IS AN APPLICATION OF FOURTH-ORDER DIRECTIONAL
DIFFERENCING IN THE NUMERICAL METHOD OF LINES. IT IS INTENDED
SPECIFICALLY FOR THE ANALYSIS OF CONVECTIVE SYSTEMS MODELLED BY
FIRST-ORDER HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS AS DIS-
CUSSED IN SUBROUTINE DSS012. THE COEFFICIENTS OF THE FINITE

DIFFERENCE APPROXIMATIONS USED HEREIN ARE TAKEN FROM BICKLEY, W.

G., FORMULAE FOR NUMERICAL DIFFERENTIATION, THE MATHEMATICAL
GAZETTE, PP. 19-27, 1941, N =4, M =1, P =10, 1, 2, 3, 4. THE
IMPLEMENTATION IS THE **FIVE-POINT BIASED UPWIND FORMULA** OF
M. B. CARVER AND H. W. HINDS, THE METHOD OF LINES AND THE
ADVECTION EQUATION, SIMULATION, VOL. 31, NO. 2, PP. 59-69,
AUGUST, 1978

DIMENSION U(N) ,UX(N)

COMPUTE THE COMMON FACTOR FOR EACH FINITE DIFFERENCE APPROXIMATION
CONTAINING THE SPATIAL INCREMENT, THEN SELECT THE FINITE DIFFER-

ENCE APPROXIMATION DEPENDING ON THE SIGN OF V (SIXTH ARGUMENT) .
DX= (XU-XL) /FLOAT (N-1)

R4FDX=1./(12.*DX)

IF(V.LT.0.)GO TO 10

(1) FINITE DIFFERENCE APPROXIMATION FOR POSITIVE V
UX( 1)=R4FDX*

1( -25.*%U( 1) +48.*U( 2) -36.*U( 3) +16.*U( 4) -3.*U( 5))
UX( 2)=R4FDX*

1( -3.*U( 1) -10.*U( 2) +18.*U( 3) =-6.*U( 4) +1.*U( 5))
UX( 3)=R4FDX*

1( +1.*U( 1) -8.*U( 2) +0.*U( 3) +8.*U( 4) -1.*U( 5))
NM1=N-1 :

DO 1 I=4,NM1
UX( 1I)=R4FDX*

1( -1.*U(I-3) +6.*U(I-2) -18.*U(I-1) +10.*U( I) +3.*U(I+1))

CONTINUE
UX( N)=R4FDX*

1 3.*U(N-4) -16.*U(N-3) +36.*U(N-2) -48.*U(N-1) +25.*U( N))



RETURN

(2) FINITE DIFFERENCE
UX( 1)=R4FDX* '
1( -25.*U( 1) +48.*U( 2)
NM3=N-3
DO 2 I=2,NM3
UX( 1I)=R4FDX*
1( -3.*U0(I-1) -10.*U( 1I)
CONTINUE
UX (N-2) =R4FDX*
1( +1.*U(N-4) -8.*U(N-3)
UX (N-1) =R4FDX*
1( -1.*U(N-4) +6.*U(N-3)
UX( N)=R4FDX* :
1( 3.*U(N-4) -16.*U(N-3)
RETURN
END

APPROXIMATION FOR NEGATIVE V

-36.*U( 3) +16.*U( 4) -3.

+18.*U(I+1) -6.*U(I+2) +1.

+0.*U(N-2) +8.*U(N-1) -1.
-18.*U(N-2) +10.*U(N-1) +3

+36.*U(N-2) -48.*U(N-1) +25

*U( 5))
*T(I+3))
*U( N))
.*U( N))
.*U( N))
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SUBROUTINE LSODES (F, NEQ, Y, T, TOUT, ITOL, RTOL, ATOL, ITASK,

. ISTATE, IOPT, RWORK, LRW, IWORK, LIW, JAC, MF)
EXTERNAL F, JAC
INTEGER NEQ, ITOL, ITASK, ISTATE, IOPT, LRW, IWORK, LIW, MF
REAL Y, T, TOUT, RTOL, ATOL, RWORK
DIMENSION NEQ(1), Y(1), RTOL(1l), ATOL(1l), RWORK(LRW), IWORK(LIW)
THIS IS THE MAY 2, 1983 VERSION OF
LSODES.. LIVERMORE SOLVER FOR ORDINARY DIFFERENTIAL EQUATIONS

WITH GENERAL SPARSE JACOBIAN MATRICES.

THIS VERSION IS IN SINGLE PRECISION.

LSODES SOLVES THE INITIAL VALUE PROBLEM FOR STIFF OR NONSTIFF
SYSTEMS OF FIRST ORDER ODE-S,

DY/DT = F(T,Y) , OR, IN COMPONENT FORM,

DY(I)/DT = F(I) = F(I,T,Y(1),Y(2),...,Y(NEQ)) (I = 1,...,NEQ).
LSODES IS A VARIANT OF THE LSODE PACKAGE, AND IS INTENDED FOR
PROBLEMS IN WHICH THE JACOBIAN MATRIX DF/DY HAS AN ARBITRARY
SPARSE STRUCTURE (WHEN THE PROBLEM IS STIFF).

AUTHORS. . ALAN C. HINDMARSH,
MATHEMATICS AND STATISTICS DIVISION, L-316
LAWRENCE LIVERMORE NATIONAL LABORATORY
LIVERMORE, CA 94550.

AND ANDREW H. SHERMAN
EXXON PRODUCTION RESEARCH CO.
P. O. BOX 2189
HOUSTON, TX 77001
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SUMMARY OF USAGE.

COMMUNICATION BETWEEN THE USER AND THE LSODES PACKAGE, FOR NORMAL
SITUATIONS, IS SUMMARIZED HERE. THIS SUMMARY DESCRIBES ONLY A SUBSET
OF THE FULL SET OF OPTIONS AVAILABLE. SEE THE FULL DESCRIPTION FOR
DETAILS, INCLUDING OPTIONAL COMMUNICATION, NONSTANDARD OPTIONS,

AND INSTRUCTIONS FOR SPECIAL SITUATIONS. SEE ALSO THE EXAMPLE
PROBLEM (WITH PROGRAM AND OUTPUT) FOLLOWING THIS SUMMARY.

A. FIRST PROVIDE A SUBROUTINE OF THE FORM. .
SUBROUTINE F (NEQ, T, Y, YDOT)
DIMENSION Y (NEQ), YDOT (NEQ)
WHICH SUPPLIES THE VECTOR FUNCTION F BY LOADING YDOT(I) WITH F(I).

B. NEXT DETERMINE (OR GUESS) WHETHER OR NOT THE PROBLEM IS STIFF.
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WHOSE REAL PART IS NEGATIVE AND LARGE IN MAGNITUDE, COMPARED TO THE
RECIPROCAL OF THE T SPAN OF .INTEREST. . IF THE PROBLEM IS NONSTIFF,

USE A METHOD FLAG MF = 10. 1IF IT IS STIFF, THERE ARE TWO STANDARD
FOR THE METHOD FLAG, MF = 121 AND MF = 222. IN BOTH CASES, LSODES
REQUIRES THE JACOBIAN MATRIX IN SOME FORM, AND IT TREATS THIS MATRIX
IN GENERAL SPARSE FORM, WITH SPARSITY STRUCTURE DETERMINED INTERNALLY.
(FOR OPTIONS WHERE THE USER SUPPLIES THE SPARSITY STRUCTURE, SEE

THE FULL DESCRIPTION OF MF BELOW.) '

C. IF THE PROBLEM IS STIFF, YOU ARE ENCOURAGED TO SUPPLY THE JACOBIAN
DIRECTLY (MF = 121), BUT IF THIS IS NOT FEASIBLE, LSODES WILL
COMPUTE IT INTERNALLY BY DIFFERENCE QUOTIENTS (MF = 222).
IF YOU ARE SUPPLYING THE JACOBIAN, PROVIDE A SUBROUTINE OF THE FORM..
SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ)
DIMENSION Y (1), IAN(1), JAN(l), PDJ(1)
HERE NEQ, T, Y, AND J ARE INPUT ARGUMENTS, AND THE JAC ROUTINE IS TO
LOAD THE ARRAY PDJ (OF LENGTH NEQ) WITH THE J-TH COLUMN OF DF/DY.
I.E., LOAD PDJ(I) WITH DF(I)/DY(J) FOR ALL RELEVANT VALUES OF I.
THE ARGUMENTS IAN AND JAN SHOULD BE IGNORED FOR NORMAL SITUATIONS.
LSODES WILL CALL THE JAC ROUTINE WITH J = 1,2,...,NEQ.
ONLY NONZERO ELEMENTS NEED BE LOADED. USUALLY, A CRUDE APPROXIMATION
TO DF/DY, POSSIBLY WITH FEWER NONZERO. ELEMENTS, WILL SUFFICE.

D. WRITE A MAIN PROGRAM WHICH CALLS SUBROUTINE LSODES ONCE FOR
EACH POINT AT WHICH ANSWERS ARE DESIRED. THIS SHOULD ALSO PROVIDE
FOR POSSIBLE USE OF LOGICAL UNIT 6 FOR OUTPUT OF ERROR MESSAGES
BY LSODES. ON THE FIRST CALL TO LSODES, SUPPLY ARGUMENTS AS FOLLOWS..
F = NAME OF SUBROUTINE FOR RIGHT-HAND SIDE VECTOR F.

THIS NAME MUST BE DECLARED EXTERNAL IN CALLING PROGRAM.

NEQ = NUMBER OF FIRST ORDER ODE-S. ‘
Y = ARRAY OF INITIAL VALUES, OF LENGTH NEQ.
T = THE INITIAL VALUE OF THE INDEPENDENT VARIABLE.
TOUT = FIRST POINT WHERE OUTPUT IS DESIRED (.NE. T). :
ITOL = 1 OR 2 ACCORDING AS ATOL (BELOW) IS A SCALAR OR ARRAY.
RTOL = RELATIVE TOLERANCE PARAMETER (SCALAR) .
ATOL = ABSOLUTE TOLERANCE PARAMETER (SCALAR OR ARRAY) .
THE ESTIMATED LOCAL ERROR IN Y (I) WILL BE CONTROLLED SO AS
TO BE ROUGHLY LESS (IN MAGNITUDE) THAN
EWT(I) = RTOL*ABS(Y(I)) + ATOL IF ITOL = 1, OR
EWT(I) = RTOL*ABS(Y(I)) + ATOL(I) IF ITOL = 2.
THUS THE LOCAL ERROR TEST PASSES IF, IN EACH COMPONENT,
EITHER THE ABSOLUTE ERROR IS LESS THAN ATOL (OR ATOL(I)),
OR THE RELATIVE ERROR IS LESS THAN RTOL.
USE RTOL = 0.0 FOR PURE ABSOLUTE ERROR CONTROL, AND
USE ATOL = 0.0 (OR ATOL(I) = 0.0) FOR PURE RELATIVE ERROR
CONTROL. CAUTION.. ACTUAL (GLOBAL) ERRORS MAY EXCEED THESE
LOCAL TOLERANCES, SO CHOOSE THEM CONSERVATIVELY.
ITASK = 1 FOR NORMAL COMPUTATION OF OUTPUT VALUES OF Y AT T = TOUT.
ISTATE = INTEGER FLAG (INPUT AND OUTPUT). SET ISTATE = 1.
IOPT = 0 TO INDICATE NO OPTIONAL INPUTS USED.
RWORK = REAL WORK ARRAY OF LENGTH AT LEAST..

20 + 16*NEQ FOR MF = 10,
20 + (2 + 1./LENRAT)*NNZ + (11 + 9./LENRAT) *NEQ
FOR MF = 121 OR 222,

WHERE. .

NNZ = THE NUMBER OF NONZERO ELEMENTS IN THE SPARSE
JACOBIAN (IF THIS IS UNKNOWN, USE AN ESTIMATE), AND

LENRAT = THE REAL TO INTEGER WORDLENGTH RATIO (USUALLY 1 IN

SINGLE PRECISION AND 2 IN DOUBLE PRECISION) .
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IN ANY CASE, THE REQUIRED SIZE OF RWORK CANNOT GENERALLY
. BE PREDICTED IN ADVANCE IF MF = 121 OR 222, AND THE VALUE

ABOVE IS A ROUGH ESTIMATE OF A CRUDE LOWER BOUND. SOME

EXPERIMENTATION WITH THIS SIZE MAY BE NECESSARY.

(WHEN KNOWN, THE CORRECT REQUIRED LENGTH IS AN OPTIONAL

OUTPUT, AVAILABLE IN IWORK(17).)

LRW = DECLARED LENGTH OF RWORK (IN USER-S DIMENSION) .

IWORK = INTEGER WORK ARRAY OF LENGTH AT LEAST 30.

LIW = DECLARED LENGTH OF IWORK (IN USER-S DIMENSION) .

JAC = NAME OF SUBROUTINE FOR JACOBIAN MATRIX (MF = 121).
IF USED, THIS NAME MUST BE DECLARED EXTERNAL IN CALLING
PROGRAM. IF NOT USED, PASS A DUMMY NAME.

MF = METHOD FLAG. STANDARD VALUES ARE.

10 FOR NONSTIFF (ADAMS) METHOD, NO JACOBIAN USED.
121 FOR STIFF (BDF) METHOD, USER-SUPPLIED SPARSE JACOBIAN.
222 FOR STIFF METHOD, INTERNALLY GENERATED SPARSE JACOBIAN.
NOTE THAT THE MAIN PROGRAM MUST DECLARE ARRAYS Y, RWORK, IWORK,
AND POSSIBLY ATOL.

E. THE OUTPUT FROM THE FIRST CALL (OR ANY CALL) IS..

Y = ARRAY OF COMPUTED VALUES OF Y(T) VECTOR.
T = CORRESPONDING VALUE OF INDEPENDENT VARIABLE (NORMALLY TOUT) .
ISTATE = 2 IF LSODES WAS SUCCESSFUL, NEGATIVE OTHERWISE.

-1 MEANS EXCESS WORK DONE ON THIS CALL (PERHAPS WRONG MF) .

-2 MEANS EXCESS ACCURACY REQUESTED (TOLERANCES TOO SMALL) .

-3 MEANS ILLEGAL. INPUT DETECTED (SEE PRINTED MESSAGE) .

-4 MEANS REPEATED ERROR TEST FAILURES (CHECK ALL INPUTS).

-5 MEANS REPEATED CONVERGENCE FAILURES (PERHAPS BAD JACOBIAN
SUPPLIED OR WRONG CHOICE OF MF OR TOLERANCES) .

-6 MEANS ERROR WEIGHT BECAME ZERO DURING PROBLEM. (SOLUTION
COMPONENT I VANISHED, AND ATOL OR ATOL({I) = 0.)

A RETURN WITH ISTATE = -1, -4, OR -5 MAY RESULT FROM USING

AN INAPPROPRIATE SPARSITY STRUCTURE, ONE THAT IS QUITE

DIFFERENT FROM THE INITIAL STRUCTURE. CONSIDER CALLING

LSODES AGAIN WITH ISTATE = 3 TO FORCE THE STRUCTURE TO BE

REEVALUATED. SEE THE FULL DESCRIPTION OF ISTATE BELOW.

F. TO CONTINUE THE INTEGRATION AFTER A SUCCESSFUL RETU?N, SIMPLY
RESET TOUT AND CALL LSODES AGAIN. NO OTHER PARAMETERS NEED BE RESET.

FULL DESCRIPTION OF USER INTERFACE TO LSODES.
THE USER INTERFACE TO LSODES CONSISTS OF THE FOLLOWING PARTS.

I. THE CALL SEQUENCE TO SUBROUTINE LSODES, WHICH IS A DRIVER
ROUTINE FOR THE SOLVER. THIS INCLUDES DESCRIPTIONS OF BOTH
THE CALL SEQUENCE ARGUMENTS AND OF USER~SUPPLIED ROUTINES.
FOLLOWING THESE DESCRIPTIONS IS A DESCRIPTION OF
OPTIONAL INPUTS AVAILABLE THROUGH THE CALL SEQUENCE, AND THEN
A DESCRIPTION OF OPTIONAL OUTPUTS (IN THE WORK ARRAYS).

II. DESCRIPTIONS OF OTHER ROUTINES IN THE LSODES PACKAGE THAT MAY BE
(OPTIONALLY) CALLED BY THE USER. THESE PROVIDE THE ABILITY TO
ALTER ERROR MESSAGE HANDLING, SAVE AND RESTORE THE INTERNAL
COMMON, AND OBTAIN SPECIFIED DERIVATIVES OF THE SOLUTION Y (T).

III. DESCRIPTIONS OF COMMON BLOCKS TO BE DECLARED IN OVERLAY
OR SIMILAR ENVIRONMENTS, OR TO BE SAVED WHEN DOING AN INTERRUPT
OF THE PROBLEM AND CONTINUED SOLUTION LATER.



C IV. DESCRIPTION OF TWO SUBROUTINES IN THE LSODES PACKAGE, EITHER OF
- WHICH THE USER MAY REPLACE WITH HIS OWN VERSION, IF DESIRED.
THESE RELATE TO THE MEASUREMENT OF ERRORS.

PART I. CALL SEQUENCE.

C THE CALL SEQUENCE PARAMETERS USED FOR INPUT ONLY ARE
- F, NEQ, TOUT, ITOL, RTOL, ATOL, ITASK, IOPT, LRW, LIW, JAC, MF,
AND THOSE USED FOR BOTH INPUT AND OUTPUT ARE
c Y, T, ISTATE. '
L THE WORK ARRAYS RWORK AND IWORK ARE ALSO USED FOR CONDITIONAL AND
© OPTIONAL INPUTS AND OPTIONAL OUTPUTS. (THE TERM OUTPUT HERE REFERS
TO THE RETURN FROM SUBROUTINE LSODES TO THE USER-S CALLING PROGRAM.)

C .
~ THE LEGALITY OF INPUT PARAMETERS WILL BE THOROUGHLY CHECKED ON THE
. INITIAL CALL FOR THE PROBLEM, BUT NOT CHECKED THEREAFTER UNLESS A
C CHANGE IN INPUT PARAMETERS IS FLAGGED BY ISTATE = 3 ON INPUT.
F=X
- THE DESCRIPTIONS OF THE CALL ARGUMENTS ARE AS FOLLOWS.
C , .
CF = THE NAME OF THE USER-SUPPLIED SUBROUTINE DEFINING THE
ODE SYSTEM. THE SYSTEM MUST BE PUT IN THE FIRST-ORDER
- FORM DY/DT = F(T,Y), WHERE F IS A VECTOR-VALUED FUNCTION
C OF THE SCALAR T AND THE VECTOR Y. SUBROUTINE F IS TO
- COMPUTE THE FUNCTION F. 1IT IS TO HAVE THE FORM
' SUBROUTINE F (NEQ, T, Y, YDOT)
C DIMENSION Y (1), YDOT(1)
o WHERE NEQ, T, AND Y ARE INPUT, AND THE ARRAY YDOT = F(T,Y)
IS OUTPUT. Y AND YDOT ARE ARRAYS OF LENGTH NEQ.
- (IN THE DIMENSION STATEMENT ABOVE, 1 IS A DUMMY
c DIMENSION.. IT CAN BE REPLACED BY ANY VALUE.)
SUBROUTINE F SHOULD NOT ALTER Y (1),...,Y(NEQ).
F MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM.
c
o SUBROUTINE F MAY ACCESS USER-DEFINED QUANTITIES IN
NEQ(2),... AND Y(NEQ(1)+1l),... IF NEQ IS AN ARRAY
C (DIMENSIONED IN F) AND Y HAS LENGTH EXCEEDING NEQ(1).
cC. SEE THE DESCRIPTIONS OF NEQ AND Y BELOW.
- NEQ = THE SIZE OF THE ODE SYSTEM (NUMBER OF FIRST ORDER
C ORDINARY DIFFERENTIAL EQUATIONS). USED ONLY FOR INPUT.
- NEQ MAY BE DECREASED, BUT NOT INCREASED, DURING THE PROBLEM.
B IF NEQ IS DECREASED (WITH ISTATE = 3 ON INPUT), THE
C REMAINING COMPONENTS OF Y SHOULD BE LEFT UNDISTURBED, IF
C- THESE ARE TO BE ACCESSED IN F AND/OR JAC.
- NORMALLY, NEQ IS A SCALAR, AND IT IS GENERALLY REFERRED TO
C AS A SCALAR IN THIS USER INTERFACE DESCRIPTION. HOWEVER,
' NEQ MAY BE AN ARRAY, WITH NEQ(1) SET TO THE SYSTEM SIZE.
' (THE LSODES PACKAGE ACCESSES ONLY NEQ(1).) 1IN EITHER CASE,
C THIS PARAMETER IS PASSED AS THE NEQ ARGUMENT IN ALL CALLS
e TO F AND JAC. HENCE, IF IT IS AN ARRAY, LOCATIONS :
" NEQ(2),... MAY BE USED TO STORE OTHER INTEGER DATA AND' PASS
C IT TO F AND/OR JAC. SUBROUTINES F AND/OR JAC MUST INCLUDE
C. NEQ IN A DIMENSION STATEMENT IN THAT CASE.
CY = A REAL ARRAY FOR THE VECTOR OF DEPENDENT VARIABLES, OF
C LENGTH NEQ OR MORE. USED FOR BOTH INPUT AND OUTPUT ON THE
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TOUT

ITOL

RTOL

ATOL

FIRST CALL (ISTATE = 1), AND ONLY FOR OUTPUT ON OTHER CALLS.

- ON THE FIRST CALL, Y MUST CONTAIN THE VECTOR OF INITIAL

It

VALUES. ON OUTPUT, Y CONTAINS THE COMPUTED SOLUTION VECTOR,
EVALUATED AT T. 1IF DESIRED, THE Y ARRAY MAY BE USED
FOR OTHER PURPOSES BETWEEN CALLS TO THE SOLVER.

THIS ARRAY IS PASSED AS THE Y ARGUMENT IN ALL CALLS TO

F AND JAC. HENCE ITS LENGTH MAY EXCEED NEQ, AND LOCATIONS
Y(NEQ+1), ... MAY BE USED TO STORE OTHER REAL DATA AND

PASS IT TO F AND/OR JAC. (THE LSODES PACKAGE ACCESSES ONLY
Y(1),...,Y(NEQ).)

THE INDEPENDENT VARIABLE. ON INPUT, T IS USED ONLY ON THE
FIRST CALL, AS THE INITIAL POINT OF THE INTEGRATION.
ON OUTPUT, AFTER EACH CALL, T IS THE VALUE AT WHICH A

COMPUTED SOLUTION Y IS EVALUATED (USUALLY THE SAME AS TOUT).

ON AN ERROR RETURN, T IS THE FARTHEST POINT REACHED.

THE NEXT VALUE OF T AT WHICH A COMPUTED SOLUTION IS DESIRED.

USED ONLY FOR INPUT.

WHEN STARTING THE PROBLEM (ISTATE = 1), TOUT MAY BE EQUAL
TO T FOR ONE CALL, THEN SHOULD .NE. T FOR THE NEXT CALL.

. FOR THE INITIAL T, AN INPUT VALUE OF TOUT .NE. T IS USED

IN ORDER TO DETERMINE THE DIRECTION OF THE INTEGRATION
(I.E. THE ALGEBRAIC SIGN OF THE STEP SIZES) AND THE ROUGH
SCALE OF THE PROBLEM. INTEGRATION IN EITHER DIRECTION
(FORWARD OR BACKWARD IN T) IS PERMITTED.

IF ITASK = 2 OR 5 (ONE-STEP MODES), TOUT IS IGNORED AFTER
THE FIRST CALL (I.E. THE FIRST CALL WITH TOUT .NE. T).
OTHERWISE, TOUT IS REQUIRED ON EVERY CALL.

IF ITASK = 1, 3, OR 4, THE VALUES OF TOUT NEED NOT BE
MONOTONE, BUT A VALUE OF TOUT WHICH BACKS UP IS LIMITED
TO THE CURRENT INTERNAL T INTERVAL, WHOSE ENDPOINTS ARE
TCUR - HU AND TCUR (SEE OPTIONAL OUTPUTS, BELOW, FOR
TCUR AND HU) .

AN INDICATOR FOR THE TYPE OF ERROR CONTROL. SEE
DESCRIPTION BELOW UNDER ATOL. USED ONLY FOR INPUT.

A RELATIVE ERROR TOLERANCE PARAMETER, EITHER A SCALAR OR
AN ARRAY OF LENGTH NEQ. SEE DESCRIPTION BELOW UNDER ATOL.
INPUT ONLY. :

AN ABSOLUTE ERROR TOLERANCE PARAMETER, EITHER A SCALAR OR
AN ARRAY OF LENGTH NEQ. INPUT ONLY.

THE INPUT PARAMETERS ITOL, RTOL, AND ATOL DETERMINE
THE ERROR CONTROL PERFORMED BY THE SOLVER. = THE SOLVER WILL
CONTROL THE VECTOR E = (E(I)) OF ESTIMATED LOCAL ERRORS
IN Y, ACCORDING TO AN INEQUALITY OF THE FORM

RMS-NORM OF ( E(I)/EWT(I) ) .LE. 1,
WHERE EWT(I) = RTOL(I)*ABS(Y(I)) + ATOL(I),
AND THE RMS-NORM (ROOT-MEAN-SQUARE NORM) HERE IS
RMS-NORM (V) = SQRT(SUM V(I)**2 / NEQ). HERE EWT = (EWT(I))

IS A VECTOR OF WEIGHTS WHICH MUST ALWAYS BE POSITIVE, AND
THE VALUES OF RTOL AND ATOL SHOULD ALL BE NON-NEGATIVE.
THE FOLLOWING TABLE GIVES THE TYPES (SCALAR/ARRAY) OF
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RTOL AND ATOL, AND THE CORRESPONDING FORM OF EWT(I).

ITOL RTOL ATOL EWT(I)
1 SCALAR SCALAR RTOL*ABS (Y(I)) + ATOL
2 SCALAR - ARRAY RTOL*ABS (Y (I)) + ATOL(I)
3 ARRAY SCALAR RTOL(I)*ABS(Y(I)) + ATOL
4 ARRAY ARRAY RTOL (I) *ABS(Y(I)) + ATOL(I)
WHEN EITHER OF THESE PARAMETERS IS A SCALAR, IT NEED NOT
BE DIMENSIONED IN THE USER-S CALLING PROGRAM.
IF NONE OF THE ABOVE CHOICES (WITH ITOL, RTOL, AND ATOL
FIXED THROUGHOUT THE PROBLEM) IS SUITABLE, MORE GENERAL
ERROR CONTROLS. CAN BE OBTAINED BY SUBSTITUTING
USER-~SUPPLIED ROUTINES FOR THE SETTING OF EWT AND/OR FOR
THE NORM CALCULATION. SEE PART IV BELOW.
IF GLOBAL ERRORS ARE TO BE ESTIMATED BY MAKING A REPEATED
RUN ON THE SAME PROBLEM WITH SMALLER TOLERANCES, THEN ALL
COMPONENTS OF RTOL AND ATOL (I.E. OF EWT) SHOULD BE SCALED
DOWN UNIFORMLY.
ITASK = AN INDEX SPECIFYING THE TASK TO BE PERFORMED.
INPUT ONLY. ITASK HAS THE FOLLOWING VALUES AND MEANINGS.
1 MEANS NORMAIL COMPUTATION OF OUTPUT VALUES OF Y(T) AT
T = TOUT (BY OVERSHOOTING AND INTERPOLATING) .
2 MEANS TAKE ONE STEP ONLY AND RETURN.
3 MEANS STOP AT THE FIRST INTERNAL MESH POINT AT OR
BEYOND T = TOUT AND RETURN.
4 =~ MEANS NORMAL COMPUTATION OF OUTPUT VALUES OF Y(T) AT
T = TOUT BUT WITHOUT OVERSHOOTING T = TCRIT.
TCRIT MUST BE INPUT AS RWORK(1l). TCRIT MAY BE EQUAL TO
OR BEYOND TOUT, BUT NOT BEHIND IT IN THE DIRECTION OF
INTEGRATION. THIS OPTION IS USEFUL IF THE PROBLEM
HAS A SINGULARITY AT OR BEYOND T = TCRIT.
5 MEANS TAKE ONE STEP, WITHOUT PASSING TCRIT, AND RETURN.
TCRIT MUST BE INPUT AS RWORK(1) .
NOTE.. IF ITASK = 4 OR 5 AND THE SOLVER REACHES TCRIT
(WITHIN ROUNDOFF), IT WILL RETURN T = TCRIT (EXACTLY) TO
INDICATE THIS (UNLESS ITASK = 4 AND TOUT COMES BEFORE TCRIT,
IN WHICH CASE ANSWERS AT T = TOUT ARE RETURNED FIRST).
ISTATE = AN INDEX USED FOR INPUT AND OUTPUT TO SPECIFY THE
THE STATE OF THE CALCULATION.
ON INPUT, THE VALUES OF ISTATE ARE AS FOLLOWS.

1 MEANS THIS IS THE FIRST CALL FOR THE PROBLEM
(INITIALIZATIONS WILL BE DONE). SEE NOTE BELOW.

2 MEANS THIS IS NOT THE FIRST CALL, AND THE CALCULATION
IS TO CONTINUE NORMALLY, WITH NO CHANGE IN ANY INPUT
PARAMETERS EXCEPT POSSIBLY TOUT AND ITASK.

(IF ITOL, RTOL, AND/OR ATOL ARE CHANGED BETWEEN CALLS
WITH ISTATE = 2, THE NEW VALUES WILL BE USED BUT NOT
TESTED FOR LEGALITY.) 5

3 MEANS THIS IS NOT THE FIRST CALL, AND THE ‘
CALCULATION IS TO' CONTINUE NORMALLY, BUT WITH
A CHANGE IN INPUT PARAMETERS OTHER THAN
TOUT AND ITASK. CHANGES ARE ALLOWED IN
NEQ, ITOL, RTOL, ATOL, IOPT, LRW, LIW, MF,



noaoonnnaoaoanaooOOaONONNOONANAONONONANNNANANANANNNNANNNNNNNANAAN

THE CONDITIONAL INPUTS IA AND JA,
AND ANY OF THE OPTIONAL INPUTS EXCEPT HO.
IN PARTICULAR, IF MITER = 1 OR 2, A CALL WITH ISTATE = 3
WILL CAUSE THE SPARSITY STRUCTURE OF THE PROBLEM TO BE
RECOMPUTED (OR REREAD FROM IA AND JA IF MOSS = 0).
NOTE.. A PRELIMINARY CALL WITH TOUT = T IS NOT COUNTED
AS A FIRST CALL HERE, AS NO INITIALIZATION OR CHECKING OF
INPUT IS DONE. (SUCH A CALL IS SOMETIMES USEFUL FOR THE
PURPOSE OF OUTPUTTING THE INITIAL CONDITIONS.)
THUS THE FIRST CALL FOR WHICH TOUT .NE. T REQUIRES
ISTATE = 1 ON INPUT.

ON OUTPUT, ISTATE HAS THE FOLLOWING VALUES AND MEANINGS.

1 MEANS NOTHING WAS DONE, AS TOUT WAS EQUAL TO T WITH
ISTATE = 1 ON INPUT. (HOWEVER, AN INTERNAL COUNTER WAS
SET TO DETECT AND PREVENT REPEATED CALLS OF THIS TYPE.)

2 MEANS THE INTEGRATION WAS PERFORMED SUCCESSFULLY.

-1 MEANS AN EXCESSIVE AMOUNT OF WORK (MORE THAN MXSTEP
STEPS) WAS DONE ON THIS CALL, BEFORE -COMPLETING THE
REQUESTED TASK, BUT THE INTEGRATION WAS OTHERWISE
SUCCESSFUL AS FAR AS T. (MXSTEP IS AN OPTIONAL INPUT
AND IS NORMALLY 500.) TO CONTINUE, THE USER MAY
SIMPLY RESET ISTATE TO A VALUE .GT. 1 AND CALL AGAIN
(THE EXCESS WORK STEP COUNTER WILL BE RESET TO 0).

IN ADDITION, THE USER MAY INCREASE MXSTEP TO AVOID
THIS ERROR RETURN (SEE BELOW ON OPTIONAL INPUTS).

-2 MEANS TOO MUCH ACCURACY WAS REQUESTED FOR THE PRECISION
OF THE MACHINE BEING USED. THIS WAS DETECTED BEFORE
COMPLETING THE REQUESTED TASK, BUT THE INTEGRATION
WAS SUCCESSFUL AS FAR AS T. TO CONTINUE, THE TOLERANCE
PARAMETERS MUST BE RESET, AND ISTATE MUST BE SET
TO 3. THE OPTIONAL OUTPUT TOLSF MAY BE USED FOR THIS
PURPOSE. (NOTE.. IF THIS CONDITION IS DETECTED BEFORE
TAKING ANY STEPS, THEN AN ILLEGAL INPUT RETURN
(ISTATE = -3) OCCURS INSTEAD.)

-3 MEANS ILLEGAL INPUT WAS DETECTED, BEFORE TAKING ANY

- INTEGRATION STEPS. SEE WRITTEN MESSAGE FOR DETAILS.
NOTE.. 1IF THE SOLVER DETECTS AN INFINITE LOOP OF CALLS
TO THE SOLVER WITH ILLEGAL INPUT, IT WILL CAUSE
THE RUN TO STOP.

-4 MEANS THERE WERE REPEATED ERROR TEST FAILURES ON
ONE ATTEMPTED STEP, BEFORE COMPLETING THE REQUESTED
TASK, BUT THE INTEGRATION WAS SUCCESSFUL AS FAR AS T.
THE PROBLEM MAY HAVE A SINGULARITY, OR THE INPUT
MAY BE INAPPROPRIATE.

-5 MEANS THERE WERE REPEATED CONVERGENCE TEST FAILURES ON
ONE ATTEMPTED STEP, BEFORE COMPLETING THE REQUESTED
TASK, BUT THE INTEGRATION WAS SUCCESSFUL AS FAR AS T.
THIS MAY BE CAUSED BY AN INACCURATE JACOBIAN MATRIX,

IF ONE IS. BEING USED. A

-6 MEANS EWT(I) BECAME ZERO FOR SOME I DURING THE
INTEGRATION. PURE RELATIVE ERROR CONTROL (ATOL(I)=0.0)
WAS REQUESTED ON A VARIABLE WHICH HAS NOW VANISHED
THE INTEGRATION WAS SUCCESSFUL AS FAR AS T.

NOTE.. AN ERROR RETURN WITH ISTATE = -1, -4, OR -5 AND WITH
MITER = 1 OR 2 MAY MEAN THAT THE SPARSITY STRUCTURE OF THE
PROBLEM HAS CHANGED SIGNIFICANTLY SINCE IT WAS LAST
DETERMINED (OR INPUT). 1IN THAT CASE, ONE CAN ATTEMPT TO
COMPLETE THE INTEGRATION BY SETTING ISTATE = 3 ON THE NEXT
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CALL, SO THAT A NEW STRUCTURE DETERMINATION IS DONE.

SINCE THE NORMAL OUTPUT VALUE OF ISTATE IS 2,

IT DOES NOT NEED TO BE RESET FOR NORMAL CONTINUATION.
ALSO, SINCE A NEGATIVE INPUT VALUE OF ISTATE WILL BE
REGARDED AS ILLEGAL, A NEGATIVE OUTPUT VALUE REQUIRES THE
USER TO CHANGE IT, AND POSSIBLY OTHER INPUTS, BEFORE
CALLING THE SOLVER AGAIN.

AN INTEGER FLAG TO SPECIFY WHETHER OR. NOT ANY OPTIONAL
INPUTS ARE BEING USED ON THIS CALL. INPUT ONLY.
THE OPTIONAL INPUTS ARE LISTED SEPARATELY BELOW.

IOPT = 0 MEANS NO OPTIONAL INPUTS ARE BEING USED.
DEFAULT VALUES WILL BE USED IN ALL CASES.
IOPT = 1 MEANS ONE OR MORE OPTIONAL INPUTS ARE BEING USED.

A WORK ARRAY USED FOR A MIXTURE OF REAL (SINGLE PRECISION)
AND INTEGER WORK SPACE.
THE LENGTH OF RWORK (IN REAL WORDS) MUST BE AT LEAST

20 + NYH* (MAXORD + 1) + 3*NEQ + LWM WHERE
NYH = THE INITIAL VALUE OF NEQ,
MAXORD = 12 (IF METH = 1) OR 5 (IF METH = 2) (UNLESS A

SMALLER VALUE IS GIVEN AS AN OPTIONAL INPUT),

LWM = 0 IF MITER = O,
LWM = 2*NNZ + 2*NEQ + (NNZ+9*NEQ)/LENRAT IF MITER = 1,
LWM = 2*NNZ + 2*NEQ + (NNZ+10*NEQ)/LENRAT IF MITER = 2,
LWM = NEQ + 2 IF MITER = 3.
IN THE ABOVE FORMULAS,
NNZ = NUMBER OF NONZERO ELEMENTS IN THE JACOBIAN MATRIX.
LENRAT = THE REAL TO INTEGER WORDLENGTH RATIO (USUALLY 1 IN

SINGLE PRECISION AND 2 IN DOUBLE PRECISION) .
(SEE THE MF DESCRIPTION FOR METH AND MITER.)
THUS IF MAXORD HAS ITS DEFAULT VALUE AND NEQ IS CONSTANT,
THE MINIMUM LENGTH OF RWORK IS..

20 + 16*NEQ FOR MF = 10,
20 + 16*NEQ + LWM FOR MF = 11, 111, 211, 12, 112, 212,
22 + 17*NEQ FOR MF = 13,
20 + 9*NEQ FOR MF = 20,
20 + O9*NEQ + LWM FOR MF = 21, 121, 221, 22, 122, 222,
22 + 10*NEQ FOR MF = 23.

IF MITER = 1 OR 2, THE ABOVE FORMULA FOR LWM IS ONLY A

CRUDE LOWER BOUND. THE REQUIRED LENGTH OF RWORK CANNOT
BE READILY PREDICTED IN GENERAL, AS IT DEPENDS ON THE
SPARSITY STRUCTURE OF THE PROBLEM. SOME EXPERIMENTATION
MAY BE NECESSARY.

THE FIRST 20 WORDS OF RWORK ARE RESERVED FOR CONDITIONAL
AND OPTIONAL INPUTS AND OPTIONAL OUTPUTS.

THE FOLLOWING WORD IN RWORK IS A CONDITIONAL INPUT..
RWORK(1) = TCRIT = CRITICAL VALUE OF T WHICH THE SOLVER
IS NOT TO OVERSHOOT. REQUIRED IF ITASK IS
4 OR 5, AND IGNORED OTHERWISE. (SEE ITASK )

THE LENGTH OF THE ARRAY RWORK, AS DECLARED BY THE USER
(THIS WILL BE CHECKED BY THE SOLVER.) "

AN INTEGER WORK ARRAY.
31 + NEQ + NNZ
30

THE LENGTH OF IWORK MUST BE AT LEAST
IF MOSS = 0 AND MITER = 1 OR 2, OR
OTHERWISE.
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(NNZ IS THE NUMBER OF NONZERO ELEMENTS IN DF/DY.)

IN LSODES, IWORK IS USED ONLY FOR CONDITIONAL AND
OPTIONAL INPUTS AND OPTIONAL OUTPUTS.

THE FOLLOWING TWO BLOCKS OF WORDS IN IWORK ARE CONDITIONAL
INPUTS, REQUIRED IF MOSS = 0 AND MITER = 1 OR 2, BUT NOT
OTHERWISE (SEE THE DESCRIPTION OF MF FOR MOSS).

IWORK(30+J) = IA(J) (J=1,...,NEQ+1)

IWORK (31+NEQ+K) = JA{K) (K=1,...,NNZ)
THE TWO ARRAYS IA AND JA DESCRIBE THE SPARSITY STRUCTURE
TO BE ASSUMED FOR THE JACOBIAN MATRIX. JA CONTAINS THE ROW
INDICES WHERE NONZERO ELEMENTS OCCUR, READING IN COLUMNWISE
ORDER, AND IA CONTAINS THE STARTING LOCATIONS IN JA OF THE
DESCRIPTIONS OF COLUMNS 1,...,NEQ, IN THAT ORDER, WITH
IA(1) = 1. THUS, FOR EACH COLUMN INDEX J = 1,...,NEQ, THE
VALUES OF THE ROW INDEX I IN COLUMN J WHERE A NONZERO
ELEMENT MAY OCCUR ARE GIVEN BY ' :

I = JA(K), WHERE IA(J) .LE. K .LT. IA(J+1).
IF NNZ IS THE TOTAL NUMBER OF NONZERO LOCATIONS ASSUMED,
THEN THE LENGTH OF THE JA ARRAY IS NNZ, AND IA(NEQ+1) MUST
BE NNZ + 1. DUPLICATE ENTRIES ARE NOT ALLOWED.

LIW = THE LENGTH OF THE ARRAY IWORK, AS DECLARED BY THE USER.
(THIS WILL BE CHECKED BY THE SOLVER.) '

NOTE.. THE WORK ARRAYS MUST NOT BE ALTERED BETWEEN CALLS TO LSODES
FOR THE SAME PROBLEM, EXCEPT POSSIBLY FOR THE CONDITIONAL AND
OPTIONAL INPUTS, AND EXCEPT FOR THE LAST 3*NEQ WORDS OF RWORK.

THE LATTER SPACE IS USED FOR INTERNAL SCRATCH SPACE, AND SO IS
AVAILABLE FOR USE BY THE USER OUTSIDE LSODES BETWEEN CALLS, IF
DESIRED (BUT NOT FOR USE BY F OR JAC).

JAC = NAME OF USER-SUPPLIED ROUTINE (MITER = 1 OR MOSS = 1) TO

COMPUTE THE JACOBIAN MATRIX, DF/DY, AS A FUNCTION OF
THE SCALAR T AND THE VECTOR Y. IT IS TO HAVE THE FORM

SUBROUTINE JAC (NEQ, T, Y, J, IAN, JAN, PDJ)

DIMENSION Y (1), IAN(1), JAN(1l), PDJ(1)
WHERE NEQ, T, Y, J, IAN, AND JAN ARE INPUT, AND THE ARRAY
PDJ, OF LENGTH NEQ, IS TO BE LOADED WITH COLUMN J
OF THE JACOBIAN ON OUTPUT. THUS DF(I)/DY(J) IS TO BE
LOADED INTO PDJ(I) FOR ALL RELEVANT VALUES OF I.
HERE T AND Y HAVE THE SAME MEANING AS IN SUBROUTINE F,
AND J IS A COLUMN INDEX (1 TO NEQ). IAN AND JAN ARE
UNDEFINED IN CALLS TO JAC FOR STRUCTURE DETERMINATION
(MOSS = 1). OTHERWISE, IAN AND JAN ARE STRUCTURE
DESCRIPTORS, AS DEFINED UNDER OPTIONAL OUTPUTS BELOW, AND
SO CAN BE USED TO DETERMINE THE RELEVANT ROW INDICES I, IF
DESIRED. (IN THE DIMENSION STATEMENT ABOVE, 1 IS A
DUMMY DIMENSION.. IT CAN BE REPLACED BY ANY VALUE.)

JAC NEED NOT PROVIDE DF/DY EXACTLY. A CRUDE
APPROXIMATION (POSSIBLY WITH GREATER SPARSITY) WILL DO.

'IN ANY CASE, PDJ IS PRESET TO ZERO BY THE SOLVER,
SO THAT ONLY THE NONZERO ELEMENTS NEED BE LOADED BY JAC.
CALLS TO JAC ARE MADE WITH J = 1,...,NEQ, IN THAT ORDER, AND
EACH SUCH SET OF CALLS IS PRECEDED BY A CALL TO F WITH THE
SAME ARGUMENTS NEQ, T, AND Y. THUS TO GAIN SOME EFFICIENCY,
INTERMEDIATE QUANTITIES SHARED BY BOTH CALCULATIONS MAY BE
SAVED IN A USER COMMON BLOCK BY F AND NOT RECOMPUTED BY JAC,
IF DESIRED. JAC MUST NOT ALTER ITS INPUT ARGUMENTS.



JAC MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM.

c . SUBROUTINE JAC MAY ACCESS USER-DEFINED QUANTITIES IN
- NEQ(2),... AND Y(NEQ(1)+1),... IF NEQ IS AN ARRAY
! (DIMENSIONED IN JAC) AND Y HAS LENGTH EXCEEDING NEQ(1).
< SEE THE DESCRIPTIONS OF NEQ AND Y ABOVE.
c
. MF = THE METHOD FLAG. USED ONLY FOR INPUT.
! MF HAS THREE DECIMAL DIGITS-- MOSS, METH, MITER--
C MF = 100*MOSS + 10*METH + MITER.
- MOSS INDICATES THE METHOD TO BE USED TO OBTAIN THE SPARSITY
! STRUCTURE OF THE JACOBIAN MATRIX IF MITER = 1 OR 2..
C MOSS = 0 MEANS THE USER HAS SUPPLIED IA AND JA
Ne (SEE. DESCRIPTIONS UNDER IWORK ABOVE) .
' MOSS = 1 MEANS THE USER HAS SUPPLIED JAC (SEE BELOW)
- AND THE STRUCTURE WILL BE OBTAINED FROM NEQ
c INITIAL CALLS TO JAC.
- MOSS = 2 MEANS THE STRUCTURE WILL BE OBTAINED FROM NEQ+1
INITIAL CALLS TO F.
c METH INDICATES THE BASIC LINEAR MULTISTEP METHOD..
£ METH = 1 MEANS THE IMPLICIT ADAMS METHOD.
METH = 2 MEANS THE METHOD BASED ON BACKWARD
“ DIFFERENTIATION FORMULAS (BDF-S).
£ MITER INDICATES THE CORRECTOR ITERATION METHOD. .
MITER = O MEANS FUNCTIONAL ITERATION (NO JACOBIAN MATRIX
IS INVOLVED) .
C MITER = 1 MEANS CHORD ITERATION WITH A USER-SUPPLIED
- SPARSE JACOBIAN, GIVEN BY SUBROUTINE JAC.
MITER = 2 MEANS CHORD ITERATION WITH AN INTERNALLY
C GENERATED (DIFFERENCE QUOTIENT) SPARSE JACOBIAN
Q (USING NGP EXTRA CALLS TO F PER DF/DY VALUE,
WHERE NGP IS AN OPTIONAL OUTPUT DESCRIBED BELOW.)
- MITER = 3 MEANS CHORD ITERATION WITH AN INTERNALLY
c GENERATED DIAGONAL JACOBIAN APPROXIMATION.
- (USING 1 EXTRA CALL TO F PER DF/DY EVALUATION) .
IF MITER = 1 OR MOSS = 1, THE USER MUST SUPPLY A SUBROUTINE
C JAC (THE NAME IS ARBITRARY) AS DESCRIBED ABOVE UNDER JAC.
fal OTHERWISE, A DUMMY ARGUMENT CAN BE USED.
. THE STANDARD CHOICES FOR MF ARE..
c MF = 10 FOR A NONSTIFF PROBLEM,
MF = 21 OR 22 FOR A STIFF PROBLEM WITH IA/JA SUPPLIED
(21 IF JAC 1S SUPPLIED, 22 IF NOT),
C MF = 121 FOR A STIFF PROBLEM WITH JAC SUPPLIED,
- BUT NOT IA/JA,
\\ MF = 222 FOR A STIFF PROBLEM WITH NEITHER IA/JA NOR
o} JAC SUPPLIED.
£ THE SPARSENESS STRUCTURE CAN BE CHANGED DURING THE

PROBLEM BY MAKING A CALL TO LSODES WITH ISTATE = 3.

D i e R e T T e T I R I R ]

C OPTIONAL INPUTS.

THE FOLLOWING IS A LIST OF THE OPTIONAL INPUTS PROVIDED FOR IN THE
C CALL SEQUENCE. (SEE ALSO PART II.) FOR EACH SUCH INPUT VARIABLE,
&, THIS TABLE LISTS ITS NAME AS USED IN THIS DOCUMENTATION, ITS :
;LOCATION IN THE CALL SEQUENCE, ITS MEANING, AND THE DEFAULT VALUE.
¢ THE USE OF ANY OF THESE INPUTS REQUIRES IOPT = 1, AND IN THAT
C. CASE ALL OF THESE INPUTS ARE EXAMINED. A VALUE OF ZERO FOR ANY

OF THESE OPTIONAL INPUTS WILL CAUSE THE DEFAULT VALUE TO BE USED.

THUS TO USE A SUBSET OF THE, OPTIONAL INPUTS, SIMPLY PRELOAD
C LOCATIONS 5 TO 10 IN RWORK AND IWORK TO 0.0 AND O RESPECTIVELY, AND
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THEN SET THOSE OF INTEREST TO NONZERO VALUES.
NAME LOCATION MEANING AND DEFAULT VALUE

HO RWORK(5) THE STEP SIZE TO BE ATTEMPTED ON THE FIRST STEP.
THE DEFAULT VALUE IS DETERMINED BY THE SOLVER.

HMAX RWORK(6) THE MAXIMUM ABSOLUTE STEP SIZE ALLOWED.
THE DEFAULT VALUE IS INFINITE.

HMIN RWORK(7) THE MINIMUM ABSOLUTE STEP SIZE ALLOWED.
THE DEFAULT VALUE IS 0. (THIS LOWER BOUND IS NOT
ENFORCED ON THE FINAL STEP BEFORE REACHING TCRIT
WHEN ITASK = 4 OR 5.)

SETH RWORK (8) THE ELEMENT THRESHHOLD FOR SPARSITY DETERMINATION
WHEN MOSS = 1 OR 2. IF THE ABSOLUTE VALUE OF
AN ESTIMATED JACOBIAN ELEMENT IS .LE. SETH, IT
WILL BE ASSUMED TO BE ABSENT IN THE STRUCTURE.
THE DEFAULT VALUE OF SETH IS 0.

MAXORD IWORK(5) THE MAXIMUM ORDER TO BE ALLOWED. THE DEFAULT
VALUE IS 12 IF METH = 1, AND 5 IF METH = 2.
IF MAXORD EXCEEDS THE DEFAULT VALUE, IT WILL
BE REDUCED TO THE DEFAULT VALUE.
IF MAXORD IS CHANGED DURING THE PROBLEM, IT MAY
CAUSE THE CURRENT ORDER TO BE REDUCED.

MXSTEP IWORK(6) MAXIMUM NUMBER OF (INTERNALLY DEFINED) STEPS
ALLOWED DURING ONE CALL TO THE SOLVER.
THE DEFAULT VALUE IS 500.

MXHNIL IWORK(7) MAXIMUM NUMBER OF MESSAGES PRINTED (PER PROBLEM)
WARNING THAT T + H = T ON A STEP (H = STEP SIZE).
THIS MUST BE POSITIVE TO RESULT IN A NON-DEFAULT
VALUE. THE DEFAULT VALUE IS 10.

OPTIONAL OUTPUTS.

AS OPTIONAL ADDITIONAL OUTPUT FROM LSODES, THE VARIABLES LISTED
BELOW ARE QUANTITIES RELATED TO THE PERFORMANCE OF LSODES

WHICH ARE AVAILABLE TO THE USER. THESE ARE COMMUNICATED BY WAY OF
THE WORK ARRAYS, BUT ALSO HAVE INTERNAL MNEMONIC NAMES AS SHOWN.
EXCEPT WHERE STATED OTHERWISE, ALL OF THESE OUTPUTS ARE DEFINED

ON ANY SUCCESSFUL RETURN FROM LSODES, AND ON ANY RETURN WITH
ISTATE = -1, -2, -4, -5, OR -6. ON AN ILLEGAL INPUT RETURN
(ISTATE = -3), THEY WILL BE UNCHANGED FROM THEIR EXISTING VALUES
(IF ANY), EXCEPT POSSIBLY FOR TOLSF, LENRW, AND LENIW.

ON ANY ERROR RETURN, OUTPUTS RELEVANT TO THE ERROR WILL BE DEFINED,
AS NOTED BELOW.

NAME LOCATION MEANING
HU RWORK (11) THE STEP SIZE IN T LAST USED (SUCCESSFULLY).
HCUR RWORK (12) THE STEP SIZE TO BE ATTEMPTED ON THE NEXT STEP.

TCUR RWORK (13) THE CURRENT VALUE OF THE INDEPENDENT VARIABLE
WHICH THE SOLVER HAS ACTUALLY REACHED, I.E. THE

CURRENT INTERNAL MESH POINT IN T. ON OUTPUT, TCUR
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TOLSF RWORK (14)
NST IWORK (11)
NFE IWORK (12)
NJE IWORK (13)
NQU IWORK (14)

NQCUR IWORK (15)

© IMXER IWORK (16)

hc

lnc ha Jac

ho /o

ha jo o

In o,

LENRW IWORK (17)

LENIW IWORK (18)
NNZ IWORK (19)
NGP IWORK (20)
NLU IWORK (21)
LYH IWORK (22)

IPIAN IWORK (23)

IPJAN IWORK (24)

WILL ALWAYS BE AT LEAST AS FAR AS THE ARGUMENT
T, BUT MAY BE FARTHER (IF INTERPOLATION WAS DONE) .

A TOLERANCE SCALE FACTOR, GREATER THAN 1.0,
COMPUTED WHEN A REQUEST FOR TOO MUCH ACCURACY WAS
DETECTED (ISTATE = -3 IF DETECTED AT THE START OF
THE PROBLEM, ISTATE = -2 OTHERWISE). IF ITOL IS
LEFT UNALTERED BUT RTOL AND ATOL ARE UNIFORMLY
SCALED UP BY A FACTOR OF TOLSF FOR THE NEXT CALL,
THEN THE SOLVER IS DEEMED LIKELY TO SUCCEED.

(THE USER MAY ALSO IGNORE TOLSF AND ALTER THE
TOLERANCE PARAMETERS IN ANY OTHER WAY APPROPRIATE.)

THE NUMBER OF STEPS TAKEN FOR THE PROBLEM SO FAR.

- THE NUMBER OF F EVALUATIONS FOR THE PROBLEM SO FAR,

EXCLUDING THOSE FOR STRUCTURE DETERMINATION
(MOSS = 2).

THE NUMBER OF JACOBIAN EVALUATIONS FOR THE PROBLEM
SO FAR, EXCLUDING THOSE FOR STRUCTURE DETERMINATION
(MOSS = 1).

THE METHOD ORDER LAST USED (SUCCESSFULLY) .
THE ORDER TO BE ATTEMPTED ON THE NEXT STEP.

THE INDEX OF THE COMPONENT OF LARGEST MAGNITUDE IN
THE WEIGHTED LOCAL ERROR VECTOR ( E(I)/EWT(I) ),
ON AN ERROR RETURN WITH ISTATE = -4 OR -5.

THE LENGTH OF RWORK ACTUALLY REQUIRED.
THIS IS DEFINED ON NORMAL RETURNS AND ON AN ILLEGAL
INPUT RETURN FOR INSUFFICIENT STORAGE.

THE LENGTH OF IWORK ACTUALLY REQUIRED.
THIS IS DEFINED ON NORMAL RETURNS AND ON AN ILLEGAL
INPUT RETURN FOR INSUFFICIENT STORAGE.

THE NUMBER OF NONZERO ELEMENTS IN THE JACOBIAN
MATRIX, INCLUDING THE DIAGONAL (MITER = 1 OR 2).
(THIS MAY DIFFER FROM THAT GIVEN BY IA(NEQ+1) -
IF MOSS = 0, BECAUSE OF ADDED DIAGONAL ENTRIES.)

THE NUMBER OF GROUPS OF COLUMN INDICES, USED IN
DIFFERENCE QUOTIENT JACOBIAN APROXIMATIONS IF
MITER = 2. THIS IS ALSO THE NUMBER OF EXTRA F
EVALUATIONS NEEDED FOR EACH JACOBIAN EVALUATION.

THE NUMBER OF SPARSE LU DECOMPOSITIONS FOR THE
PROBLEM SO FAR.

THE BASE ADDRESS IN RWORK OF THE HISTORY ARRAY YH,
DESCRIBED BELOW IN THIS LIST.

THE BASE ADDRESS OF THE STRUCTURE DESCRIPTOR’ARRAY
IAN, DESCRIBED BELOW IN THIS LIST.

THE BASE ADDRESS OF THE STRUCTURE DESCRIPTOR ARRAY
JAN, DESCRIBED BELOW IN THIS LIST.
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NZL .IWORK (25) THE NUMBER OF NONZERO ELEMENTS IN THE STRICT LOWER
TRIANGLE OF THE LU FACTORIZATION USED IN THE CHORD
ITERATION (MITER = 1 OR 2).

NZU IWORK(26) THE NUMBER OF NONZERO ELEMENTS IN THE STRICT UPPER
TRIANGLE OF THE LU FACTORIZATION USED IN THE CHORD
ITERATION (MITER = 1 OR 2).
THE TOTAL NUMBER OF NONZEROS IN THE FACTORIZATION
IS THEREFORE NZL + NZU + NEQ.

THE FOLLOWING FOUR ARRAYS ARE SEGMENTS OF THE RWORK ARRAY WHICH

MAY ALSO BE OF INTEREST TO THE USER AS OPTIONAL OUTPUTS.

FOR EACH ARRAY, THE TABLE BELOW GIVES ITS INTERNAL NAME,

ITS BASE ADDRESS, AND ITS DESCRIPTION.

FOR YH AND ACOR, THE BASE ADDRESSES ARE IN RWORK (A REAL ARRAY) .

THE INTEGER ARRAYS IAN AND JAN ARE TO BE OBTAINED BY DECLARING AN
INTEGER ARRAY IWK AND IDENTIFYING IWK(1l) WITH RWORK(21), USING EITHER
AN EQUIVALENCE STATEMENT OR A SUBROUTINE CALL. THEN THE BASE
ADDRESSES IPIAN (OF IAN) AND IPJAN (OF JAN) IN IWK ARE TO BE OBTAINED
AS OPTIONAL OUTPUTS IWORK(23) AND IWORK(24), RESPECTIVELY.

THUS IAN(1) IS IWK(IPIAN), ETC.

NAME BASE ADDRESS DESCRIPTION

IAN IPIAN (IN IWK) STRUCTURE DESCRIPTOR ARRAY OF SIZE NEQ + 1.

JAN IPJAN (IN IWK) STRUCTURE DESCRIPTOR ARRAY OF SIZE NNZ.
(SEE ABOVE) IAN AND JAN TOGETHER DESCRIBE THE SPARSITY

STRUCTURE OF THE JACOBIAN MATRIX, AS USED BY
LSODES WHEN MITER = 1 OR 2.

JAN CONTAINS THE ROW INDICES OF THE NONZERO
LOCATIONS, READING IN COLUMNWISE ORDER, AND
IAN CONTAINS THE STARTING LOCATIONS IN JAN OF
THE DESCRIPTIONS OF COLUMNS 1,...,NEQ, IN
THAT ORDER, WITH IAN(1) = 1. THUS FOR EACH
J=1,...,NEQ, THE ROW INDICES I OF THE
NONZERO LOCATIONS IN COLUMN J ARE

I = JAN(K), IAN(J) .LE. K .LT. IAN(J+1).
NOTE THAT IAN(NEQ+1) = NNZ + 1.

(IF MOSS = 0, IAN/JAN MAY DIFFER FROM THE
INPUT IA/JA BECAUSE OF A DIFFERENT ORDERING
IN EACH COLUMN, AND ADDED DIAGONAL ENTRIES.)

YH LYH THE NORDSIECK HISTORY ARRAY, OF SIZE NYH BY
(OPTIONAL (NQCUR + 1), WHERE NYH IS THE INITIAL VALUE
OUTPUT) OF NEQ. FOR J = 0,1,...,NQCUR, COLUMN J+1

OF YH CONTAINS HCUR**J/FACTORIAL(J) TIMES

THE J-TH DERIVATIVE OF THE INTERPOLATING
POLYNOMIAL CURRENTLY REPRESENTING THE SOLUTION,
EVALUATED AT T = TCUR. THE BASE ADDRESS LYH
IS ANOTHER OPTIONAL OUTPUT, LISTED ABOVE.

ACOR LENRW-NEQ+1 ARRAY OF SIZE NEQ USED FOR THE ACCUMULATED
CORRECTIONS ON EACH STEP, SCALED ON OUTPUT
TO REPRESENT THE ESTIMATED LOCAL ERROR IN Y
ON THE LAST STEP. THIS IS THE VECTOR E IN
THE DESCRIPTION OF THE ERROR CONTROL. IT IS
DEFINED ONLY ON A SUCCESSFUL RETURN FROM
LSODES.
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PART II. OTHER ROUTINES CALLABLE.

1 ¥e)

" THE FOLLOWING ARE OPTIONAL CALLS WHICH THE USER MAY MAKE TO
C GAIN ADDITIONAL CAPABILITIES IN CONJUNCTION WITH LSODES.
L (THE ROUTINES XSETUN AND XSETF ARE DESIGNED TO CONFORM TO THE.
. SLATEC ERROR HANDLING PACKAGE.)

FORM OF CALL FUNCTION
CALL XSETUN (LUN) SET THE LOGICAL UNIT NUMBER, LUN, FOR
OUTPUT OF MESSAGES FROM LSODES, IF
THE DEFAULT IS NOT DESIRED.
THE DEFAULT VALUE OF LUN IS 6.

Jao

_ha

CALL XSETF (MFLAG) SET A FLAG TO CONTROL THE PRINTING OF
' MESSAGES BY LSODES.
MFLAG = 0 MEANS DO NOT PRINT. (DANGER..
THIS RISKS LOSING VALUABLE INFORMATION.)
MFLAG = 1 MEANS PRINT (THE DEFAULT) .

e ¢

han

EITHER OF THE ABOVE CALLS MAY BE MADE AT
ANY TIME AND WILL TAKE EFFECT IMMEDIATELY.

nc

CALL SVCMS (RSAV, ISAV) STORE IN RSAV AND ISAV THE CONTENTS
OF THE INTERNAL COMMON BLOCKS USED BY
LSODES (SEE PART III BELOW).
RSAV MUST BE A REAL ARRAY OF LENGTH 225
OR MORE, AND ISAV MUST BE AN INTEGER
ARRAY OF LENGTH 75 OR MORE.

| X®]

na

CALL RSCMS (RSAV, ISAV) RESTORE, FROM RSAV AND ISAV, THE CONTENTS
: OF THE INTERNAL COMMON BLOCKS USED BY
LSODES. PRESUMES A PRIOR CALL TO SVCMS
WITH THE SAME ARGUMENTS.

10 ¢

SVCMS AND RSCMS ARE USEFUL IF
INTERRUPTING A RUN AND RESTARTING
LATER, OR ALTERNATING BETWEEN TWO OR
MORE PROBLEMS SOLVED WITH LSODES.

hQ

nc

CALL INTDY(,,,,.,) PROVIDE DERIVATIVES OF Y, OF VARIOUS
- (SEE BELOW) S ORDERS, AT A SPECIFIED POINT T, IF
C DESIRED. IT MAY BE CALLED ONLY AFTER
i% A SUCCESSFUL RETURN FROM LSODES.
C THE DETAILED INSTRUCTIONS FOR USING INTDY ARE AS FOLLOWS.
£ THE FORM OF THE CALL IS..

LYH = IWORK(22)

C CALL INTDY (T, K, RWORK(LYH), NYH, DKY, IFLAG)

THE INPUT PARAMETERS ARE..
Cc : ' '
& T = VALUE OF INDEPENDENT VARIABLE WHERE ANSWERS ARE DESIRED
; (NORMALLY THE SAME AS THE T LAST RETURNED BY LSODES) .
C FOR VALID RESULTS, T MUST LIE BETWEEN TCUR - HU AND TCUR.
c (SEE OPTIONAL OUTPUTS FOR TCUR AND HU.)

K = INTEGER ORDER OF THE DERIVATIVE DESIRED. K MUST SATISFY
0 .LE. K .LE. NQCUR, WHERE NQCUR IS THE CURRENT ORDER
(SEE OPTIONAL OUTPUTS). THE CAPABILITY CORRESPONDING

;0(
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TO K = 0, I.E. COMPUTING Y(T), IS ALREADY PROVIDED
BY LSODES DIRECTLY. SINCE NQCUR. .GE. 1, THE FIRST
DERIVATIVE DY/DT IS ALWAYS AVAILABLE WITH INTDY.

LYH = THE BASE ADDRESS OF THE HISTORY ARRAY YH, OBTAINED
AS AN OPTIONAL OUTPUT AS SHOWN ABOVE.
NYH = COLUMN LENGTH OF YH, EQUAL TO THE INITIAL VALUE OF NEQ.

THE OUTPUT PARAMETERS ARE.

DKY = A REAL ARRAY OF LENGTH NEQ CONTAINING THE COMPUTED VALUE
OF THE K-TH DERIVATIVE OF Y(T).
IFLAG = INTEGER FLAG, RETURNED AS 0 IF K AND T WERE LEGAL,

-1 IF K WAS ILLEGAL, AND -2 IF T WAS ILLEGAL.
ON AN ERROR RETURN, A MESSAGE IS ALSO WRITTEN.
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PART III. COMMON BLOCKS.

IF LSODES IS TO BE USED IN AN OVERLAY SITUATION, THE USER
MUST DECLARE, IN THE PRIMARY OVERLAY, THE VARIABLES IN.
(1) THE CALL SEQUENCE TO LSODES,
(2) THE THREE INTERNAL COMMON BLOCKS
/LS0001/ OF LENGTH 258 (219 SINGLE PRECISION WORDS
FOLLOWED BY 39 INTEGER WORDS) ,
/LSS001/ OF LENGTH 40 ( 6 SINGLE PRECISION WORDS
FOLLOWED BY 34 INTEGER WORDS),
/EHO0001/ OF LENGTH 2 (INTEGER WORDS) .

IF LSODES IS USED ON A SYSTEM IN WHICH THE CONTENTS OF INTERNAL
COMMON BLOCKS ARE NOT PRESERVED BETWEEN CALLS, THE USER SHOULD
DECLARE THE ABOVE THREE COMMON BLOCKS IN HIS MAIN PROGRAM TO INSURE
THAT THEIR CONTENTS ARE PRESERVED.

IF THE SOLUTION OF A GIVEN PROBLEM BY LSODES IS TO BE INTERRUPTED
AND THEN LATER CONTINUED, SUCH AS WHEN RESTARTING AN INTERRUPTED RUN
OR ALTERNATING BETWEEN TWO OR MORE PROBLEMS, THE USER SHOULD SAVE,
FOLLOWING THE RETURN FROM THE LAST LSODES CALL PRIOR TO THE
INTERRUPTION, THE CONTENTS OF THE CALL SEQUENCE VARIABLES AND THE
INTERNAL COMMON BLOCKS, AND LATER RESTORE THESE VALUES BEFORE THE
NEXT LSODES CALL FOR THAT PROBLEM. TO SAVE AND RESTORE THE COMMON
BLOCKS, USE SUBROUTINES SVCMS AND RSCMS (SEE PART II ABOVE).

NOTE.. IN THIS VERSION OF LSODES, THERE ARE TWO DATA STATEMENTS,
IN SUBROUTINES LSODES AND XERRWV, WHICH LOAD VARIABLES INTO THESE
LABELED COMMON BLOCKS. 'ON SOME SYSTEMS, IT MAY BE NECESSARY TO
MOVE THESE TO A SEPARATE BLOCK DATA SUBPROGRAM.

PART IV. OPTIONALLY REPLACEABLE SOLVER ROUTINES.

BELOW ARE DESCRIPTIONS OF TWO ROUTINES IN THE LSODES PACKAGE WHICH
RELATE TO THE MEASUREMENT OF ERRORS. EITHER ROUTINE CAN BE

REPLACED BY A USER-SUPPLIED VERSION, IF DESIRED. HOWEVER, SINCE SUCH

A REPLACEMENT MAY HAVE A MAJOR IMPACT ON PERFORMANCE, IT SHOULD BE
DONE ONLY WHEN ABSOLUTELY NECESSARY, AND ONLY WITH GREAT CAUTION.
(NOTE.. THE MEANS BY WHICH THE PACKAGE VERSION OF A ROUTINE IS'
SUPERSEDED BY THE USER-S VERSION MAY BE SYSTEM-DEPENDENT.)

(A) EWSET.
THE FOLLOWING SUBROUTINE IS CALLED JUST BEFORE EACH INTERNAL .
INTEGRATION STEP, AND SETS THE ARRAY OF ERROR WEIGHTS, EWT, AS



DESCRIBED UNDER ITOL/RTOL/ATOL ABOVE..
SUBROUTINE EWSET (NEQ, ITOL, RTOL, ATOL, YCUR, EWT)
WHERE NEQ, ITOL, RTOL, AND ATOL ARE AS IN THE LSODES CALL SEQUENCE,
YCUR CONTAINS THE CURRENT DEPENDENT VARIABLE VECTOR, AND
EWT IS THE ARRAY OF WEIGHTS SET BY EWSET. '

IF THE USER SUPPLIES THIS SUBROUTINE, IT MUST RETURN IN EWT (I)

(I =1,...,NEQ) A POSITIVE QUANTITY SUITABLE FOR COMPARING ERRORS

IN Y(I) TO. THE EWT ARRAY RETURNED BY EWSET IS PASSED TO THE

VNORM ROUTINE (SEE BELOW), AND ALSO USED BY LSODES IN THE COMPUTATION
OF THE OPTIONAL OUTPUT IMXER, THE DIAGONAL JACOBIAN APPROXIMATION,
AND THE INCREMENTS FOR DIFFERENCE QUOTIENT JACOBIANS. '

IN THE USER-SUPPLIED VERSION OF EWSET, IT MAY BE DESIRABLE TO USE
THE CURRENT VALUES OF DERIVATIVES OF Y. DERIVATIVES UP TO ORDER NQ
ARE AVAILABLE FROM THE HISTORY ARRAY YH, DESCRIBED ABOVE UNDER
OPTIONAL OUTPUTS. 1IN EWSET, YH IS IDENTICAL TO THE YCUR ARRAY,
EXTENDED TO NQ + 1 COLUMNS WITH A COLUMN LENGTH OF NYH AND SCALE
FACTORS OF H**J/FACTORIAL(J). ON THE FIRST CALL FOR THE PROBLEM,
GIVEN BY NST = 0, NQ IS 1 AND H IS TEMPORARILY SET TO 1.0.

THE QUANTITIES NQ, NYH, H, AND NST CAN BE OBTAINED BY INCLUDING

Jac. _ha _Jaoc. . hea..ba..
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¢ IN EWSET THE STATEMENTS..
c COMMON /LS0001/ RLS(219),ILS(39)
NQ = ILS(35)

. NYH = ILS(14)
C NST = ILS(36)
- H = RLS(213)

THUS, FOR EXAMPLE, THE CURRENT VALUE OF DY/DT CAN BE OBTAINED AS
C YCUR(NYH+I)/H (I=1,...,NEQ) (AND THE DIVISION BY H IS
£ UNNECESSARY WHEN NST = 0).
« (B) VNORM. :
C THE FOLLOWING IS A REAL FUNCTION ROUTINE WHICH COMPUTES THE WEIGHTED

ROOT-MEAN-SQUARE NORM OF A VECTOR V..

D = VNORM (N, V, W)
C WHERE.. ‘
< N = THE LENGTH OF THE VECTOR,
V = REAL ARRAY OF LENGTH N CONTAINING THE VECTOR,

C W = REAL ARRAY OF LENGTH N CONTAINING WEIGHTS,
C D = SQRT( (1/N) * SUM(V(I)*W(I))**2 ).

VNORM IS CALLED WITH N = NEQ AND WITH W(I) = 1.0/EWT(I), WHERE
. EWT IS AS SET BY SUBROUTINE EWSET.
c
T IF THE USER SUPPLIES THIS FUNCTION, IT SHOULD RETURN A NON-NEGATIVE
1 VALUE OF VNORM SUITABLE FOR USE IN THE ERROR CONTROL IN LSODES.
C NONE OF THE ARGUMENTS SHOULD BE ALTERED BY VNORM.
£ FOR EXAMPLE, A USER-SUPPLIED VNORM ROUTINE MIGHT..

-SUBSTITUTE A MAX-NORM OF (V(I)*W(I)) FOR THE RMS-NORM, OR
- -IGNORE SOME COMPONENTS OF V IN THE NORM, WITH THE EFFECT OF
c SUPPRESSING THE ERROR CONTROL ON THOSE COMPONENTS OF Y.

C OTHER ROUTINES IN THE LSODES PACKAGE.

L

p IN ADDITION TO SUBROUTINE LSODES, THE LSODES PACKAGE INCLUDES THE

+C FOLLOWING SUBROUTINES AND FUNCTION ROUTINES.. ‘

C IPREP ACTS AS AN ITERFACE BETWEEN LSODES AND PREP, AND ALSO DOES
ADJUSTING OF WORK SPACE POINTERS AND WORK ARRAYS.

-~ PREP IS CALLED BY IPREP TO COMPUTE SPARSITY AND DO SPARSE MATRIX

C PREPROCESSING IF MITER = 1 OR 2.

—



JGROUP IS CALLED BY PREP TO COMPUTE GROUPS OF JACOBIAN COLUMN
. INDICES FOR USE WHEN MITER = 2.
ADJLR ADJUSTS THE LENGTH OF REQUIRED SPARSE MATRIX WORK SPACE.
IT IS CALLED BY PREP.
CNTNZU IS CALLED BY PREP AND COUNTS THE NONZERO ELEMENTS IN THE
STRICT UPPER TRIANGLE OF J + J-TRANSPOSE, WHERE J = DF/DY.
INTDY COMPUTES AN INTERPOLATED VALUE OF THE Y VECTOR AT T = TOUT.
STODE IS THE CORE INTEGRATOR, WHICH DOES ONE STEP OF THE
INTEGRATION AND THE ASSOCIATED ERROR CONTROL.
CFODE SETS ALL METHOD COEFFITIENTS AND TEST CONSTANTS.

PRJS COMPUTES AND PREPROCESSES THE JACOBIAN MATRIX J = DF/DY
AND THE NEWTON ITERATION MATRIX P = I - H*LO*J.

SLSS MANAGES SOLUTION OF LINEAR SYSTEM IN CHORD ITERATION.

EWSET SETS THE ERROR WEIGHT VECTOR EWT BEFORE EACH STEP.

VNORM COMPUTES THE WEIGHTED R.M.S. NORM OF A VECTOCR.

SVCMS AND RSCMS ~ ARE USER-CALLABLE ROUTINES TO SAVE AND RESTORE,
RESPECTIVELY, THE CONTENTS OF THE INTERNAL COMMON BLOCKS.

ODRV CONSTRUCTS A REORDERING OF THE ROWS AND COLUMNS OF
A MATRIX BY THE MINIMUM DEGREE ALGORITHM. ODRV IS A
DRIVER ROUTINE WHICH CALLS SUBROUTINES MD, MDI, MDM,

MDP, MDU, AND SRO. SEE REF. 2 FOR DETAILS. (THE ODRV
MODULE HAS BEEN MODIFIED SINCE REF. 2, HOWEVER.)

CDRV PERFORMS REORDERING, SYMBOLIC FACTORIZATION, NUMERICAL
FACTORIZATION, OR LINEAR SYSTEM SOLUTION OPERATIONS,
DEPENDING ON A PATH ARGUMENT IPATH. CDRV IS A
DRIVER ROUTINE WHICH CALLS SUBROUTINES NROC, NSFC,

NNFC, NNSC, AND NNTC. SEE REF. 3 FOR DETAILS.

LSODES USES CDRV TO SOLVE LINEAR SYSTEMS IN WHICH THE
COEFFICIENT MATRIX IS P = I - CON*J, WHERE I IS THE
IDENTITY, CON IS A SCALAR, AND J IS AN APPROXIMATION TO
THE JACOBIAN DF/DY. BECAUSE CDRV DEALS WITH ROWWISE
SPARSITY DESCRIPTIONS, CDRV WORKS WITH P-TRANSPOSE, NOT P.

R1MACH COMPUTES THE UNIT ROUNDOFF IN A MACHINE-INDEPENDENT MANNER.

XERRWV, XSETUN, AND XSETF HANDLE THE PRINTING OF ALL ERROR
MESSAGES AND WARNINGS. XERRWV IS MACHINE-DEPENDENT.

NOTE.. VNORM AND RI1IMACH ARE FUNCTION ROUTINES.
ALL THE OTHERS ARE SUBROUTINES.

THE INTRINSIC AND EXTERNAL ROUTINES USED BY LSODES ARE..
ABS, AMAX1, AMIN1, FLOAT, MAXO0, MINO, MOD, SIGN, SQRT, AND WRITE.
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EXTERNAL PRJS, SLSS

INTEGER ILLIN, INIT, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
1 MXSTEP, MXHNIL, NHNIL, NTREP, NSLAST, NYH, IOWNS

INTEGER ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
1 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU
INTEGER IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP,
1 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA,
2 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ
3 NSLJ, NGP, NLU, NNz, NSP, NZL, NZU

INTEGER I, I1, I2, IFLAG, IMAX, IMUL, IMXER, IPFLAG, IPGO,EIREM;
1 J, KGO, LENRAT, LENYHT, LENIW, LENRW, LENWM, LFO0, LIA, LJA,
2 LRTEM, LWTEM, LYHD, LYHN, MF1l, MORD, MXHNLO, MXSTPO, NCOLM
REAL TRET, ROWNS,

1l CCMAX, ELO, H, HMIN, HMXI, HU, RC, TN, UROUND

REAL CONO, CONMIN, CCMXJ, PSMALL, RBIG, SETH



REAL ATOLI, AYI, BIG, EWTI, HO, HMAX, HMX, RH, RTOLI,
1 TCRIT, TDIST, TNEXT, TOL, TOLSF, TP, SIZE, SUM, WO,
- 2 R1IMACH, VNORM
DIMENSION MORD(2)
LOGICAL IHIT .

Cm m m o e e e e e e e e e e e e e e e e e m e e e mcmmm e m e ————————
—E THE FOLLOWING TWO INTERNAL COMMON BLOCKS CONTAIN
! (A) VARIABLES WHICH ARE LOCAL TO ANY SUBROUTINE BUT WHOSE VALUES MUST
Cc BE PRESERVED BETWEEN CALLS TO THE ROUTINE (OWN VARIABLES), AND
-1 (B) VARIABLES WHICH ARE COMMUNICATED BETWEEN SUBROUTINES.
! THE STRUCTURE OF EACH BLOCK IS AS FOLLOWS.. ALL REAL VARIABLES ARE
C LISTED FIRST, FOLLOWED BY ALL INTEGERS. WITHIN EACH TYPE, THE
L VARIABLES ARE GROUPED WITH THOSE LOCAL TO SUBROUTINE LSODES FIRST,
! THEN THOSE LOCAL TO SUBROUTINE STODE OR SUBROUTINE PRJS

~ (NO OTHER ROUTINES HAVE OWN VARIABLES), AND FINALLY THOSE USED

C FOR COMMUNICATION. THE BLOCK LS0001 IS DECLARED IN SUBROUTINES
™ LSODES, IPREP, PREP, INTDY, STODE, PRJS, AND SLSS. THE BLOCK LSS001
! IS DECLARED IN SUBROUTINES LSODES, IPREP, PREP, PRJS, AND SLSS.

C GROUPS OF VARIABLES ARE REPLACED BY DUMMY ARRAYS IN THE COMMON
-~ DECLARATIONS IN ROUTINES WHERE THOSE VARIABLES ARE NOT USED.

COMMON /LS0001/ TRET, ROWNS(209),
1 CCMAX, ELO, H, HMIN, HMXI, HU, RC, TN, UROUND,
2 ILLIN, INIT, LYH, LEWT, LACOR, LSAVF, LWM, LIWM,
3 MXSTEP, MXHNIL, NHNIL, NTREP, NSLAST, NYH, IOWNS(6),
4 ICF, IERPJ, IERSL, JCUR, JSTART, KFLAG, L, METH, MITER,
5 MAXORD, MAXCOR, MSBP, MXNCF, N, NQ, NST, NFE, NJE, NQU

COMMON /LSS001/ CONO, CONMIN, CCMXJ, PSMALL, RBIG, SETH,

1 IPLOST, IESP, ISTATC, IYS, IBA, IBIAN, IBJAN, IBJGP,

2 IPIAN, IPJAN, IPJGP, IPIGP, IPR, IPC, IPIC, IPISP, IPRSP, IPA,
3 LENYH, LENYHM, LENWK, LREQ, LRAT, LREST, LWMIN, MOSS, MSBJ,

4 NSLJ, NGP, NLU, NNZ, NSP, NZL, NZU

DATA MORD(1) ,MORD(2)/12,5/, MXSTP0/500/, MXHNLO0/10/
DATA ILLIN/O/, NTREP/0/

IN THE DATA STATEMENT BELOW, SET LENRAT EQUAL TO THE RATIO OF

« THE WORDLENGTH FOR A REAL NUMBER TO THAT FOR AN INTEGER. USUALLY,
LC LENRAT = 1 FOR SINGLE PRECISION AND 2 FOR DOUBLE PRECISION. IF THE
TRUE RATIO IS NOT AN INTEGER, USE THE NEXT SMALLER INTEGER (.GE. 1).

N BLOCK A.

C THIS CODE BLOCK IS EXECUTED ON EVERY CALL.

C IT TESTS ISTATE AND ITASK FOR LEGALITY AND BRANCHES APPROPIATELY.
IF ISTATE .GT. 1 BUT THE FLAG INIT SHOWS THAT INITIALIZATION HAS

. NOT YET BEEN DONE, AN ERROR RETURN OCCURS.

C IF ISTATE = 1 AND TOUT = T, JUMP TO BLOCK G AND RETURN IMMEDIATELY.

IF (ISTATE .LT. 1 .OR. ISTATE .GT. 3) GO TO 601
IF (ITASK .LT. 1 .OR. ITASK .GT. 5) GO TO 602
— IF (ISTATE .EQ. 1) GO TO 10
. IF (INIT .EQ. 0) GO TO 603
4 IF (ISTATE .EQ. 2) GO TO 200
GO TO 20

10 INIT = 0
IF (TOUT .EQ. T) GO TO 430
20 NTREP = O



BLOCK B.

THE NEXT CODE BLOCK IS EXECUTED FOR THE INITIAL CALL
OR FOR A CONTINUATION CALL WITH PARAMETER CHANGES

- . - e . e em Em en W M e e e e = e e e e e o e e = =

(ISTATE = 1),
(ISTATE = 3).

IT CONTAINS CHECKING OF ALL INPUTS AND VARIOUS INITIALIZATIONS.

PREPROCESSING, AND OTHER INITIALIZATIONS ARE DONE IN BLOCK C.

FIRST CHECK LEGALITY OF THE NON- OPTIONAL INPUTS NEQ,

MF, ML, AND MU.

IF (NEQ(1l) .LE. 0) GO TO 604

IF (ISTATE .EQ. 1) GO TO 25

IF (NEQ(1l) .GT. N) GO TO 605
25 N = NEQ(1)

IF (ITOL .LT. 1 .OR. ITOL .GT.
IF (IOPT .LT. O .OR. IOPT .GT.
MOSS = MF/100

MF1 = MF - 100*MOSS

METH = MF1/10

MITER = MFl1 - 10*METH

IF (MOSS .LT. O
IF (METH .LT. 1
IF (MITER .LT. O
IF (MITER .EQ. O

IF (IOPT .EQ.
MAXORD

1) GO TO 40
MORD (METH)
MXSTEP MXSTPO
MXHNIL MXHNLO
IF (ISTATE .EQ. 1) HO =
HMXI =
HMIN =
SETH =
GO TO 60
40 MAXORD = IWORK(5)
IF (MAXORD .LT. 0) GO TO 611

onon

Cc
Cc
C
C
C
C IF ISTATE = 1, THE FINAL SETTING OF WORK SPACE POINTERS, THE MATRIX
C
C
C
Cc
C

.OR. MOSS .GT.
.OR. METH .GT. 2) GO TO 608
.OR. MITER .GT.
.OR. MITER .EQ. 3)
C NEXT PROCESS AND CHECK THE OPTIONAL INPUTS.

0.0E0

ITOL, IOPT,

4) GO TO 606
1) GO TO 607

2) GO TO 608

3) GO TO 608
MOSS = 0

- e - - - e e e e e = = = = —

IF (MAXORD .EQ. 0) MAXORD = 100

MAXORD = MINO (MAXORD,MORD (METH) )

MXSTEP = IWORK(6)

IF (MXSTEP .LT. 0) GO TO 612

IF (MXSTEP .EQ. 0) MXSTEP = MXSTPO

MXHNIL = IWORK(7)

IF (MXHNIL .LT. 0) GO TO 613

IF (MXHNIL .EQ. 0) MXHNIL = MXHNLO

IF (ISTATE .NE. 1) GO TO 50

HO = RWORK (5)

IF ((TOUT - T)*HO .LT. 0.0E0) GO TO 614
50 HMAX = RWORK (6)

IF (HMAX .LT. 0.0E0) GO TO 615

HMXI = 0.0EO

IF (HMAX .GT. 0.0EQ) HMXI = 1.0E0/HMAX

HMIN = RWORK (7)

IF (HMIN .LT. 0.0EQ0) GO TO 616

SETH = RWORK (8)

IF (SETH .LT. 0.0E0) GO TO 609

C CHECK RTOL AND ATOL FOR LEGALITY.

60 RTOLI = RTOL(1)
ATOLI = ATOL(1)
DO 65 I = 1,N



IF (ITOL .GE. 3) RTOLI = RTOL(I)
IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
IF (RTOLI .LT. 0.0E0) GO TO 619
L IF (ATOLI .LT. 0.0EQ0) GO TO 620
65 CONTINUE
. COMPUTE REQUIRED WORK ARRAY LENGTHS, AS FAR AS POSSIBLE, AND TEST
' THESE AGAINST LRW AND LIW. THEN SET TENTATIVE POINTERS FOR WORK
C ARRAYS. POINTERS TO RWORK/IWORK SEGMENTS ARE NAMED BY PREFIXING L TO
-~ THE NAME OF THE SEGMENT. E.G., THE SEGMENT YH STARTS AT RWORK (LYH) .
' SEGMENTS OF RWORK (IN ORDER) ARE DENOTED WM, YH, SAVF, EWT, ACOR.
C IF MITER = 1 OR 2, THE REQUIRED LENGTH OF THE MATRIX WORK SPACE WM
L IS NOT YET KNOWN, AND SO A CRUDE MINIMUM VALUE IS USED FOR THE
* INITIAL TESTS OF LRW AND LIW, AND YH IS TEMPORARILY STORED AS FAR
TO THE RIGHT IN RWORK AS POSSIBLE, TO LEAVE THE MAXIMUM AMOUNT
OF SPACE FOR WM FOR MATRIX PREPROCESSING. THUS IF MITER = 1 OR 2
AND MOSS .NE. 2, SOME OF THE SEGMENTS OF RWORK ARE TEMPORARILY
" OMITTED, AS THEY ARE NOT NEEDED IN THE PREPROCESSING. THESE
C OMITTED SEGMENTS ARE.. ACOR IF ISTATE = 1, EWT AND ACOR IF ISTATE = 3
£ AND MOSS = 1, AND SAVF, EWT, AND ACOR IF ISTATE = 3 AND MOSS = O.
LRAT = LENRAT
IF (ISTATE .EQ. 1) NYH = N
LWMIN = 0
IF (MITER .EQ. 1) LWMIN
IF (MITER .EQ. 2) LWMIN
- IF (MITER .EQ. 3) LWMIN

Ja«.

4*N + 10*N/LRAT
4*N + 11*N/LRAT
N + 2

W on i

LENYH = (MAXORD+1) *NYH
LREST = LENYH + 3*N

— LENRW = 20 + LWMIN + LREST
IWORK(17) = LENRW
LENIW = 30

IF (MOSS .EQ. 0O .AND. MITER .NE. 0 .AND. MITER .NE. 3)
1 LENIW = LENIW + N + 1

IWORK(18) = LENIW

IF (LENRW .GT. LRW) GO TO 617
— IF (LENIW .GT. LIW) GO TO 618

LIA = 31

IF (MOSS .EQ. O .AND. MITER .NE. 0 .AND. MITER .NE. 3)
1 LENIW = LENIW + IWORK(LIA+N) - 1

IWORK(18) = LENIW

IF (LENIW .GT. LIW) GO TO 618

LJA = LIA + N + 1

- LIA = MINO (LIA,LIW)

R LJA = MINO (LJA,LIW)
LWM = 21

- IF (ISTATE .EQ. 1) NQ = 1

NCOLM = MINO (NQ+1,MAXORD+2)

LENYHM = NCOLM*NYH

LENYHT = LENYH

IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LENYHT = LENYHM
IMUL = 2

IF (ISTATE .EQ. 3) IMUL = MOSS

-~ IF (MOSS .EQ. 2) IMUL = 3

) LRTEM = LENYHT + IMUL*N

4 LWTEM = LWMIN

IF (MITER .EQ. 1 .OR. MITER .EQ. 2) LWTEM = LRW - 20 - LRTEM
LENWK = LWTEM

LYHN = LWM + LWTEM

LSAVF = LYHN + LENYHT



LEWT = LSAVF + N
LACOR = LEWT + N
ISTATC = ISTATE
IF (ISTATE .EQ. 1) GO TO 100
St
C ISTATE = 3. MOVE YH TO ITS NEW LOCATION.
C NOTE THAT ONLY THE PART OF YH NEEDED FOR THE NEXT STEP, NAMELY
C MIN(NQ+1,MAXORD+2) COLUMNS, IS ACTUALLY MOVED.
C A TEMPORARY ERROR WEIGHT ARRAY EWT IS LOADED IF MOSS = 2.
C SPARSE MATRIX PROCESSING IS DONE IN IPREP/PREP IF MITER = 1 OR 2.
C IF MAXORD WAS REDUCED BELOW NQ, THEN THE POINTERS ARE FINALLY SET
C SO THAT SAVF IS IDENTICAL TO YH(*,MAXORD+2) .
g g S
LYHD = LYH - LYHN
IMAX = LYHN - 1 + LENYHM
C MOVE YH. BRANCH FOR MOVE RIGHT, NO MOVE, OR MOVE LEFT. --------------
IF (LYHD) 70,80,74
70 DO 72 I = LYHN, IMAX
J = IMAX + LYHN - I

72 RWORK (J) = RWORK (J+LYHD)
GO TO 80
74 DO 76 I = LYHN,IMAX
76 RWORK (I) = RWORK(I+LYHD)
80 LYH = LYHN
IWORK (22) = LYH

IF (MITER .EQ. O .OR. MITER .EQ. 3) GO TO 92
IF (MOSS .NE. 2) GO TO 85
C TEMPORARILY LOAD EWT IF MITER = 1 OR 2 AND MOSS = 2. =--~-~--=-=-c--------
CALL EWSET (N, ITOL, RTOL, ATOL, RWORK(LYH), RWORK(LEWT))
DO 82 I = 1,N
IF (RWORK(I+LEWT-1) .LE. 0.0EQ0) GO TO 621
82 RWORK (I+LEWT-1) = 1.0EO0/RWORK(I+LEWT-1)
85 CONTINUE
C IPREP AND PREP DO SPARSE MATRIX PREPROCESSING IF MITER = 1 OR 2. -----
LSAVF = MINO (LSAVF, LRW)
LEWT = MINO (LEWT, LRW)
LACOR = MINO (LACOR, LRW)
CALL IPREP (NEQ, Y, RWORK, IWORK(LIA), IWORK(LJA), IPFLAG, F, JAC)
LENRW = LWM - 1 + LENWK + LREST
IWORK(17) = LENRW

IF (IPFLAG .NE. -1) IWORK(23) = IPIAN

IF (IPFLAG .NE. -1) IWORK(24) = IPJAN

IPGO = -IPFLAG + 1

GO TO (90, 628, 629, 630, 631, 632, 633), IPGO
90 IWORK (22) = LYH

IF (LENRW .GT. LRW) GO TO 617
C SET FLAG TO SIGNAL PARAMETER CHANGES TO STODE. ---=-=--==---=c-c-cc---~-
92 JSTART = -1
IF (N .EQ. NYH) GO TO 200
C NEQ WAS REDUCED. ZERO PART OF YH TO AVOID UNDEFINED REFERENCES. -----
I1 = LYH + L*NYH
I2 = LYH + (MAXORD + 1)*NYH - 1
IF (I1 .GT. I2) GO TO 200
DO 95 I = I1,I2
95 RWORK(I) = 0.0EO
GO TO 200

C BLOCK C.
C THE NEXT BLOCK IS FOR THE INITIAL CALL ONLY (ISTATE = 1).
C IT CONTAINS ALL REMAINING INITIALIZATIONS, THE INITIAL CALL TO F,



—_—

! THE SPARSE MATRIX PREPROCESSING (MITER = 1 OR 2), AND THE
C CALCULATION OF THE INITIAL STEP SIZE.
— THE ERROR WEIGHTS IN EWT ARE INVERTED AFTER BEING LOADED.

_ LYH = LYHN
: IWORK(22) = LYH
™ =T
NST = O
- H = 1.0E0 )
NNZ = 0
NGP = O
—_ NZL = 0
: NZU = 0

« LOAD THE INITIAL VALUE VECTOR IN YH. ~----emmmmm e mmm e e e e e o o
DO 105 I = 1,N
105 RWORK (I+LYH-1) = Y(I)
" INITIAL CALL TO F. (LFO POINTS TO YH(*,2).) -=----meemmmmm e e m e
LF0O = LYH + NYH
— CALL F (NEQ, T, Y, RWORK(LFO0))
NFE = 1
. LOAD AND INVERT THE EWT ARRAY. (H IS TEMPORARILY SET TO 1.0.) -------
CALL EWSET (N, ITOL, RTOL, ATOL, RWORK{(LYH), RWORK (LEWT))
DO 110 I = 1,N
IF (RWORK(I+LEWT-1) .LE. 0.0E0) GO TO 621
110 RWORK (I+LEWT-1) = 1.0EO/RWORK(I+LEWT-1)
- IF (MITER .EQ. 0 .OR. MITER .EQ. 3) GO TO 120
IPREP AND PREP DO SPARSE MATRIX PREPROCESSING IF MITER = 1 OR 2. -----
LACOR = MINO (LACOR, LRW)
- CALL IPREP (NEQ, Y, RWORK, IWORK (LIA), IWORK(LJA), IPFLAG, F, JAC)
LENRW = LWM - 1 + LENWK + LREST
IWORK(17) = LENRW

IF (IPFLAG .NE. -1) IWORK(23) = IPIAN
o IF (IPFLAG .NE. -1) IWORK(24) = IPJAN

IPGO = -IPFLAG + 1

GO TO (115, 628, 629, 630, 631, 632, 633), IPGO
—115 IWORK(22) = LYH

IF (LENRW .GT. LRW) GO TO 617 :
C CHECK TCRIT FOR LEGALITY (ITASK = 4 OR 5). -=-----mm-mmmmmmmm e
120 CONTINUE
' IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 125
TCRIT = RWORK (1)
IF ((TCRIT - TOUT)* (TOUT - T) .LT. 0.0EQ0) GO TO 625
- IF (HO .NE. 0.0EQ0 .AND. (T + HO - TCRIT)*HO .GT. 0.0EO0)
A 1 HO = TCRIT - T ,
C INITIALIZE ALL REMAINING PARAMETERS. --------me-coccmmmmcm e e e m
_125 UROUND = R1MACH (4)

JSTART = 0
IF (MITER .NE. 0) RWORK(LWM) = SQRT (UROUND)
MSBJ = 50
o NSLJ = 0
CCMXJ = 0.2E0

PSMALL = 1000.0EO0*UROUND
- RBIG = 0.01E0/PSMALL

y NHNIL = O
NJE = 0O

_ NLU = O
NSLAST = 0
HU = 0.0EO

NQU = 0



CCMAX = 0.3EO0

MAXCOR = 3
MSBP = 20
MXNCF = 10

WHERE WO = MAX ( ABS(T), ABS(TOUT) ),

F(I) = I-TH COMPONENT OF INITIAL VALUE OF F,

YWT(I) = EWT(I)/TOL (A WEIGHT FOR Y(I)).
I

THE SIGN OF HO IS INFERRED FROM THE INITIAL VALUES OF TOUT AND T.

e e e e e e e e e e A We Mo e em mm e e e m e e Am A e e e e e mm e e e s d wm mm e e e e = G e e om e W Sn mm e Ae me e e = = = e e e e e e

Clm m e m e e e e e e e e e e e e e e e e e e e e e e e e m———————————————
C THE CODING BELOW COMPUTES THE STEP SIZE, HO, TO BE ATTEMPTED ON THE
C FIRST STEP, UNLESS THE USER HAS SUPPLIED A VALUE FOR THIS.

C FIRST CHECK THAT TOUT - T DIFFERS SIGNIFICANTLY FROM ZERO.

C A SCALAR TOLERANCE QUANTITY TOL IS COMPUTED, AS MAX(RTOL(I))

C IF THIS IS POSITIVE, OR MAX(ATOL(I)/ABS(Y(I))) OTHERWISE, ADJUSTED
C SO AS TO BE BETWEEN 100*UROUND AND 1.0E-3.

C THEN THE COMPUTED VALUE HO IS GIVEN BY..

C NEQ

C HO**2 = TOL / ( WO**-2 + (1/NEQ) * SUM ( F(I)/YWT(I) )**2 )

C 1

cC

C

C

Cc

C

LFO = LYH + NYH
IF (HO .NE. 0.0E0) GO TO 180
TDIST = ABS(TOUT - T)
WO = AMAX1 (ABS(T),ABS(TOUT))
IF (TDIST .LT. 2.0E0*UROUND*W0O) GO TO 622
TOL = RTOL(1)
IF (ITOL .LE. 2) GO TO 140
DO 130 I = 1,N
130 TOL = AMAX1 (TOL,RTOL(I))
140 IF (TOL .GT. 0.0E0) GO TO 160
ATOLI = ATOL(1)
DO 150 I = 1,N
IF (ITOL .EQ. 2 .OR. ITOL .EQ. 4) ATOLI = ATOL(I)
AYI = ABS(Y(I))
IF (AYI .NE. 0.0E0) TOL = AMAX1 (TOL,ATOLI/AYI)
150 CONTINUE
160 TOL AMAX1 (TOL, 100 .0EO0*UROUND)

TOL = AMIN1 (TOL,0.001E0)

SUM = VNORM (N, RWORK(LFO), RWORK (LEWT))
SUM = 1.0E0/ (TOL*WO*W0) + TOL*SUM**2

HO = 1.0EO0/SQRT (SUM)

HO = AMIN1 (HO, TDIST)

HO = SIGN(HO,TOUT-T)

C ADJUST HO IF NECESSARY TO MEET HMAX BOUND. =-------==-=--m-=---—cooo-o-
180 RH = ABS (HO) *HMXI
IF (RH .GT. 1.0E0) HO = HO/RH
C LOAD H WITH HO AND SCALE YH(*,2) BY HO. -----------c-mmmommmmmemoo—oon

H = HO
DO 190 I = 1,N
190 RWORK(I+LF0-1) = HO*RWORK(I+LF0-1)
GO TO 270
b Cmmm e e o o o o e e e e e e e e e e e e e e e e e e e e e e e e ————
C BLOCK D.

C THE NEXT CODE BLOCK IS FOR CONTINUATION CALLS ONLY (ISTATE = 2 OR 3)
C AND IS TO CHECK STOP CONDITIONS BEFORE TAKING A STEP. ; -
Cmm e L e e o o o o o o e o o e e e o e e e e e e _ P e e e e e e mm e mm e
200 NSLAST = NST

GO TO (210, 250, 220, 230, 240), ITASK
210 IF ((TN - TOUT)*H .LT. 0.0E0) GO TO 250

CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)



IF (IFLAG .NE. 0) GO TO 627
T =.TOUT
— GO TO 420
220 ,TP = TN - HU*(1.0E0 + 100.0EO0O*UROUND)
IF ((TP - TOUT)*H .GT. 0.0E0) GO TO 623
IF ((TN - TOUT)*H .LT. 0.0E0) GO TO 250
GO TO 400 :
‘230 TCRIT = RWORK(1)
IF ((TN - TCRIT)*H .GT. 0.0E0) GO TO 624
= IF ((TCRIT - TOUT)*H .LT. 0.DE0) GO TO 625
IF ((TN - TOUT)*H .LT. 0.0EO) GO TO 245
CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)

- IF (IFLAG .NE. 0) GO TO 627
: T = TOUT
GO TO 420

240 TCRIT = RWORK(1)
- IF ((TN - TCRIT)*H .GT. 0.0EO0) GO TO 624
245 HMX = ABS(TN) + ABS(H)
IHIT = ABS(TN - TCRIT) .LE. 100.0EO0*UROUND*HMX
— IF (IHIT) GO TO 400
TNEXT = TN + H*(1.0E0 + 4.0EO0*UROUND)
IF ((TNEXT - TCRIT)*H .LE. 0.0EQ) GO TO 250
H = (TCRIT - TN)*(1.0E0 - 4.0E0*UROUND)
IF (ISTATE .EQ. 2) JSTART = -2
C BLOCK E.
< THE NEXT BLOCK IS NORMALLY EXECUTED FOR ALL CALLS AND CONTAINS
THE CALL TO THE ONE-STEP CORE INTEGRATOR STODE.

C
L THIS IS A LOOPING POINT FOR THE INTEGRATION STEPS.

. FIRST CHECK FOR TOO MANY STEPS BEING TAKEN, UPDATE EWT (IF NOT AT
C START OF PROBLEM), CHECK FOR TOO MUCH ACCURACY BEING REQUESTED, AND
CHECK FOR H BELOW THE ROUNDOFF LEVEL IN T.

250 CONTINUE
— IF ((NST-NSLAST) .GE. MXSTEP) GO TO 500

CALL EWSET (N, ITOL, RTOL, ATOL, RWORK (LYH), RWORK (LEWT))
DO 260 I = 1,N

_ IF (RWORK(I+LEWT-1) .LE. 0.0E0) GO TO 510

260 RWORK (I+LEWT-1) = 1.0EO/RWORK (I+LEWT-1)

270 TOLSF = UROUND*VNORM (N, RWORK (LYH), RWORK (LEWT))

IF (TOLSF .LE. 1.0E0) GO TO 280

- TOLSF = TOLSF*2.0EOQ

h IF (NST .EQ. 0) GO TO 626

| GO TO 520
280 IF ((TN + H) .NE. TN) GO TO 290

NHNIL = NHNIL + 1
IF (NHNIL .GT. MXHNIL) GO TO 290
CALL XERRWV (50HLSODES-- WARNING..INTERNAL T (=R1) AND H (=R2) ARE,
1 50, 101, 1, 0, 0, 0, 0, 0.0EO0, 0.0EO)
CALL XERRWV (

1 60H SUCH THAT IN THE MACHINE, T + H = T ON THE NEXT STEP ,
- 1 60, 101, 1, 0, 0, O, 0, 0.0E0, 0.0EO) :
CALL XERRWV (50H (H = STEP SIZE). SOLVER WILL CONTINUE ANYWAY,

1 50, 101, 1, 0, 0, O, 2, TN, H)

IF (NHNIL .LT. MXHNIL) GO TO 290

CALL XERRWV (50HLSODES-- ABOVE WARNING HAS BEEN ISSUED I1 TIMES. ,
1 50, 102, 1, O, O, O, O, 0.0E0O, 0.0EO)

CALL XERRWV (50H IT WILL NOT BE ISSUED AGAIN FOR THIS PROBLEM,



1 50, 102, 1, 1, MXHNIL, 0, O, 0.0E0, 0.0EO0)
290 CONTINUE

L S
C CALL STODE (NEQ, Y, YH,NYH, YH, EWT, SAVF, ACOR, WM, WM, F, JAC, PRJS, SLSS)
o m e e o e e e e e e e e e e e e e e e e e m e ————————
CALL STODE (NEQ, Y, RWORK(LYH), NYH, RWORK(LYH), RWORK (LEWT),
1 RWORK (LSAVF) , RWORK(LACOR), RWORK{(LWM), RWORK (LWM),
2 F, JAC, PRJS, SLSS)
KGO = 1 - KFLAG
GO TO (300, 530, 540), KGO ~
Cm m o oo o o e e e e m e
C BLOCK F.
C THE FOLLOWING BLOCK HANDLES THE CASE OF A SUCCESSFUL RETURN FROM THE
C CORE INTEGRATOR (KFLAG = 0). TEST FOR STOP CONDITIONS.
o = o o e o o o o e e e e e e e e mm e m
300 INIT = 1

GO TO (310, 400, 330, 340, 350), ITASK

C ITASK = 1. IF TOUT HAS BEEN REACHED, INTERPOLATE. -------------------

310 IF ((TN - TOUT)*H .LT. 0.0E0) GO TO 250
CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
T = TOUT
GO TO 420

C ITASK = 3. JUMP TO EXIT IF TOUT WAS REACHED. ------------=c-ocomocon

330 IF ((TN - TOUT)*H .GE. 0.0E0) GO TO 400
GO TO 250

C ITASK = 4. SEE IF TOUT OR TCRIT WAS REACHED. ADJUST H IF NECESSARY.

c

340 IF ((TN - TOUT)*H .LT. 0.0E0) GO TO 345
CALL INTDY (TOUT, 0, RWORK(LYH), NYH, Y, IFLAG)
T = TOUT
GO TO 420
345 HMX = ABS(TN) + ABS(H)
IHIT = ABS(TN - TCRIT) .LE. 100.0EO0*UROUND*HMX
IF (IHIT) GO TO 400
. TNEXT = TN + H*(1.0E0 + 4.0EO0*UROUND)
IF ((TNEXT - TCRIT)*H .LE. 0.0EO0) GO TO 250
H = (TCRIT - TN)*(1.0E0 - 4.0EO*UROUND)
JSTART = -2
GO TO 250
ITASK = 5. SEE IF TCRIT WAS REACHED AND JUMP TO EXIT. ---------------
350 HMX = ABS(TN) + ABS(H)
IHIT = ABS(TN - TCRIT) .LE. 100.0EO*UROUND*HMX

BLOCK G.

THE FOLLOWING BLOCK HANDLES ALL SUCCESSFUL RETURNS FROM LSODES

IF ITASK .NE. 1, Y IS LOADED FROM YH AND T IS SET ACCORDINGLY.
ISTATE IS SET TO 2, THE ILLEGAL INPUT COUNTER IS ZEROED, AND THE
OPTIONAL OUTPUTS ARE LOADED INTO THE WORK ARRAYS BEFORE RETURNING.
IF ISTATE = 1 AND TOUT = T, THERE IS A RETURN WITH NO ACTION TAKEN,
EXCEPT THAT IF THIS HAS HAPPENED REPEATEDLY, THE RUN IS TERMINATED.
400 DO 410 I = 1,N
410 Y(I) = RWORK(I+LYH-1)

T = TN

IF (ITASK .NE. 4 .AND. ITASK .NE. 5) GO TO 420
IF (IHIT) T = TCRIT
420 ISTATE = 2

ILLIN = 0
RWORK (11) = HU
RWORK (12) = H
RWORK(13) = TN



IWORK(11) = NST
IWORK(12) = NFE

- IWORK(13) = NJE
IWORK(14) = NQU
IWORK (15) = NQ

— IWORK(19) = NNZ
IWORK (20) = NGP
IWORK (21) = NLU
IWORK(25) = NZL

— IWORK(26) = NZU )
RETURN

—430 NTREP = NTREP + 1
i IF (NTREP .LT. 5) RETURN
CALL XERRWV ( :
1 60HLSODES-- REPEATED CALLS WITH ISTATE = 1 AND TOUT = T (=R1) ,
1 60, 301, 1, 0, 0, 0, 1, T, 0.0EO0)
GO TO 800

<~ BLOCK H.
- THE FOLLOWING BLOCK HANDLES ALL UNSUCCESSFUL RETURNS OTHER THAN
¢ THOSE FOR ILLEGAL INPUT. FIRST THE ERROR MESSAGE ROUTINE IS CALLED.
C IF THERE WAS AN ERROR TEST OR CONVERGENCE TEST FAILURE, IMXER IS SET.
THEN Y IS LOADED FROM YH, T IS SET TO TN, AND THE ILLEGAL INPUT
~ CQUNTER ILLIN IS SET TO 0. THE OPTIONAL OUTPUTS ARE LOADED INTO
C THE WORK ARRAYS BEFORE RETURNING.
. THE MAXIMUM NUMBER OF STEPS WAS TAKEN BEFORE REACHING TOUT. ----------
500 CALL XERRWV(50HLSODES-- AT CURRENT T (=R1l), MXSTEP (=I1) STEPS ,
- 1 50, 201, 1, o, 0, O, O, 0.0EO, 0.0EO)

CALL XERRWV (50H TAKEN ON THIS CALL BEFORE REACHING TOUT ,
1 50, 201, 1, 1, MXSTEP, 0, 1, TN, 0.0EO0)
ISTATE = -1
- GO TO 580
EWT(I) .LE. 0.0 FOR SOME I (NOT AT START OF PROBLEM). ----m-===-- r———-

510 EWTI = RWORK(LEWT+I-1)
— CALL XERRWV (50HLSODES-- AT T (=Rl1l), EWT(I1l) HAS BECOME R2 .LE. 0.,
1 50, 202, 1, 1, I, 0, 2, TN, EWTI)
ISTATE = -6
. GO TO 580
TOO MUCH ACCURACY REQUESTED FOR MACHINE PRECISION. -------c-m-meoeom—-—-
520 CALL XERRWV (50HLSODES-- AT T (=R1), TOO MUCH ACCURACY REQUESTED |,
1 50, 203, 1, 0, 0, 0, O, 0.0EO0, 0.0OEO)

- CALL XERRWV (50H FOR PRECISION OF MACHINE.. SEE TOLSF (=R2) ,
3 1 50, 203, 1, 0, O, 0, 2, TN, TOLSF)
RWORK (14) = TOLSF
- ISTATE = -2
GO TO 580
« KFLAG = -1. ERROR TEST FAILED REPEATEDLY OR WITH ABS(H) = HMIN. -----

530 CALL XERRWV(50HLSODES-- AT T(=R1) AND STEP SIZE H(=R2), THE ERROR,
1 50, 204, 1, 0, 0, O, O, 0.0EO, 0.0EO)

CALL XERRWV (50H TEST FAILED REPEATEDLY OR WITH ABS(H) = HMIN,
1 50, 204, 1, 0, O, O, 2, TN, H)

- ISTATE = -4

5 GO TO 560 j —

¢ KFLAG = -2. CONVERGENCE FAILED REPEATEDLY OR WITH ABS(H) = HMIN. ----

540 CALL XERRWV(50HLSODES-- AT T (=R1l) AND STEP SIZE H (=R2), THE '
1 50, 205, 1, o, O, O, O, 0.0EO, 0.0OEO) '
CALL XERRWV (50H CORRECTOR CONVERGENCE FAILED REPEATEDLY )
1 50, 205, 1, o, O, O, O, 0O.0EO, 0.0EOQ)



CALL XERRWV (30H OR WITH ABS(H) = HMIN ,
1 30, 205, 1, 0, 0, 0, 2, TN, H)
| ISTATE = -5
l C COMPUTE IMXER IF RELEVANT. -------mme e m e o oo m e e e e oo — o
560 BIG = 0.0EOQ
IMXER = 1
Do 570 I = 1,N
SIZE = ABS{(RWORK(I+LACOR-1)*RWORK (I+LEWT-1))
IF (BIG .GE. SIZE) GO TO 570
BIG = SIZE
IMXER = I
570 CONTINUE
IWORK(16) = IMXER
C SET Y VECTOR, T, ILLIN, AND OPTIONAL OUTPUTS. --~------comccmmmmoemmoo
580 DO 590 I = 1,N

590 Y(I) = RWORK(I+LYH-1)
T = TN
ILLIN = O
RWORK (11) = HU
RWORK (12) = H
RWORK(13) = TN
IWORK(11) = NST
IWORK (12) = NFE
IWORK(13) = NJE
IWORK (14) = NQU
IWORK (15) = NQ
IWORK(19) = NNZ
IWORK(20) = NGP
IWORK (21) = NLU
IWORK (25) = NZL
IWORK (26) = NZU
RETURN
C _______________________________________________________________________
C BLOCK I.
C THE FOLLOWING BLOCK HANDLES ALL ERROR RETURNS DUE TO ILLEGAL INPUT

C (ISTATE = -3), AS DETECTED BEFORE CALLING THE CORE INTEGRATOCR.
C FIRST THE ERROR MESSAGE ROUTINE IS CALLED. THEN IF THERE HAVE BEEN
C 5 CONSECUTIVE SUCH RETURNS JUST BEFORE THIS CALL TO THE SOLVER,
C THE RUN IS HALTED.
G m m = o o e o e e e e e e e e o o e e
601 CALL XERRWV(30HLSODES-- ISTATE (=I1) ILLEGAL ,
1 30, 1, 1, 1, ISTATE, 0, 0, 0.0E0, 0.0EQ)
GO TO 700
602 CALL XERRWV(30HLSODES-- ITASK (=I1) ILLEGAL ,
1 30, 2, 1, 1, ITASK, 0, 0, 0.0E0, 0.0E0)
GO TO 700
603 CALL XERRWV(50HLSODES-- ISTATE .GT. 1 BUT LSODES NOT INITIALIZED ,
1 50, 3, 1, 0, 0, 0O, O, 0.0EO, 0.0EO0)
GO TO 700
604 CALL XERRWV(30HLSODES-- NEQ (=I1) .LT. 1 ,
1 30, 4, 1, 1, NEQ(1), O, O, 0.0EO, 0.0EO)

GO TO 700 '

605 CALL XERRWV(50HLSODES-- ISTATE = 3 AND NEQ INCREASED (I1 TO I2) ,
1 50, 5, 1, 2, N, NEQ(1), 0, 0.QEQ, 0.0EO) o :
GO TO 700

606 CALL XERRWV(30HLSODES-- ITOL (=I1) ILLEGAL B
' 1 30, 6, 1, 1, 1TOL, O, O, 0.0EO, 0.0EO0)
GO TO 700
607 CALL XERRWV (30HLSODES-- IOPT (=I1) ILLEGAL '
1 30, 7, 1, 1, IoPT, 0, O, 0.0EO, 0.0EO)




608
609
611
612
613

614

615
616

617

618

_619

620

GO TO 700

CALL XERRWV (30HLSODES-- MF (=I1) ILLEGAL ,

1 30, 8, 1, 1, MF, 0, 0, 0.0E0, 0.0EO0)

GO TO 700

CALL XERRWV (30HLSODES-- SETH (=R1) .LT. 0.0 ,

1 30, 9, 1, 0, 0, O, 1, SETH, 0.0E0)

GO TO 700

CALL XERRWV (30HLSODES-- MAXORD (=I1) .LT. 0 ,

1 30, 11, 1, 1, MAXORD, 0, 0, 0.0EO0, 0.0EO0)

GO TO 700 -

CALL XERRWV (30HLSODES-- MXSTEP (=I1) .LT. 0 ,

1 30, 12, 1, 1, MXSTEP, 0, 0, 0.0EO, 0.0E0)

GO TO 700

CALL XERRWV (30HLSODES-- MXHNIL (=I1) .LT. 0 ,

1 30, 13, 1, 1, MXHNIL, 0, 0, 0.0EO0, 0.0E0)

GO TO 700

CALL XERRWV (40HLSODES-- TOUT (=R1) BEHIND T (=R2) ,

1 40, 14, 1, 0, 0, 0, 2, TOUT, T)

CALL XERRWV (50H INTEGRATION DIRECTION IS GIVEN BY HO (=R1l) ,
1 50, 14, 1, 0, 0, 0, 1, HO, 0.0E0)

GO TO 700

CALL XERRWV (30HLSODES-- HMAX (=R1) .LT. 0.0 ,

1 30, 15, 1, 0, 0, 0, 1, HMAX, 0.0EO0)

GO TO 700

CALL XERRWV (30HLSODES-- HMIN (=R1) .LT. 0.0 ,

1 30, 16, 1, 0, 0, 0, 1, HMIN, 0.0EO0)

GO TO 700

CALL XERRWV (50HLSODES-- RWORK LENGTH IS INSUFFICIENT TO PROCEED. ,
1 50, 17, 1, 0, 0, 0, 0, 0.0EO0, 0.0EO) ‘

CALL XERRWV (
1 60H LENGTH NEEDED IS .GE. LENRW (=I1), EXCEEDS LRW (=I2),
1 60, 17, 1, 2, LENRW, LRW, 0, 0.0EO0, 0.0E0)

GO TO 700

CALL XERRWV (50HLSODES-- IWORK LENGTH IS INSUFFICIENT TO PROCEED. ,
1 50, 18, 1, 0, 0, 0, 0, 0.0E0, 0.0E0)

CALL XERRWV (
1 60H LENGTH NEEDED IS .GE. LENIW (=I1), EXCEEDS LIW (=I2),
1 60, 18, 1, 2, LENIW, LIW, 0, 0.0EO0, 0.0EO0)

GO TO 700

CALL XERRWV (40HLSODES-- RTOL(I1) IS R1 .LT. 0.0 ,
1 40, 19, 1, 1, I, 0, 1, RTOLI, 0.0EO0)

GO TO 700

CALL XERRWV (40HLSODES-- ATOL(I1) IS Rl .LT. 0.0 ,
1 40, 20, 1, 1, I, 0, 1, ATOLI, 0.0E0)

GO TO 700

EWTI = RWORK (LEWT+I-1)

CALL XERRWV (40HLSODES-- EWT(I1) IS Rl1 .LE. 0.0 ,
1 40, 21, 1, 1, I, 0, 1, EWTI, 0.0E0)

GO TO 700

CALL XERRWV (
1 60HLSODES-- TOUT (=R1l) TOO CLOSE TO T(=R2) TO START INTEGRATION,
1 60, 22, 1, 0, 0, 0, 2, TOUT, T)

GO TO 700

CALL XERRWV ( {
1 60HLSODES-- ITASK = I1 AND TOUT (=R1) BEHIND TCUR - HU (= R2)- ,
1 60, 23, 1, 1, ITASK, 0, 2, TOUT, TP) ‘ ‘

GO TO 700

CALL XERRWV (
1 60HLSODES-- ITASK = 4 OR 5 AND TCRIT (=R1) BEHIND TCUR (=R2) ,
1 60, 24, 1, 0, 0, 0, 2, TCRIT, TN)



625

626

627

628

629

630

631

632

633

GG TO 700

1

’

’

!

’

7

’

CALL XERRWV (

1 60HLSODES-- ITASK = 4 OR 5 AND TCRIT (=R1l) BEHIND TOUT (=R2)

1 60, 25, 1, 0, 0, 0, 2, TCRIT, TOUT)

GO TO 700 A

CALL XERRWV (50HLSODES-- AT START OF PROBLEM, TOO MUCH ACCURACY
1 50, 26, 1, 0, 0, 0, 0, 0.0E0, 0.0EO0)

CALL XERRWV (

1 60H REQUESTED FOR PRECISION OF MACHINE.. SEE TOLSF (=R1)
1 60, 26, 1, 0, 0, 0, 1, TOLSF, 0.0EO0)

RWORK (14) = TOLSF

GO TO 700

CALL XERRWV (SOHLSODES-- TROUBLE FROM INTDY. ITASK = I1, TOUT = R1,
1 50, 27, 1, 1, ITASK, 0, 1, TOUT, 0.0EO0)

GO TO 700

CALL XERRWV (

1 60HLSODES-- RWORK LENGTH INSUFFICIENT (FOR SUBROUTINE PREP) .

1 60, 28, 1, 0, 0, 0, 0, 0.0E0, 0.0EOQ)

CALL XERRWV (

1 60H LENGTH NEEDED IS .GE. LENRW (=I1), EXCEEDS LRW (=I2)
1 60, 28, 1, 2, LENRW, LRW, 0, 0.0EO0, 0.0EOQ)

GO TO 700

CALL XERRWV (

1 60HLSODES-- RWORK LENGTH INSUFFICIENT (FOR SUBROUTINE JGROUP) .
1 60, 29, 1, 0, 0, 0, 0, 0.0EO, 0.0EO)

CALL XERRWV (

1 60H LENGTH NEEDED IS .GE. LENRW (=I1), EXCEEDS LRW (=I2)
1 60, 29, 1, 2, LENRW, LRW, 0, 0.0EO, 0.0E0)

GO TO 700

CALL XERRWV (

1 60HLSODES-- RWORK LENGTH INSUFFICIENT (FOR SUBROUTINE ODRV) .

1 60, 30, 1, 0, 0, 0, 0, 0.0EO, 0.0EQ)

CALL XERRWV (
1 60H LENGTH NEEDED IS .GE. LENRW (=I1), EXCEEDS LRW (=I2)
1 60, 30, 1, 2, LENRW, LRW, 0, 0.0E0, 0.0E0)

GO TO 700

CALL XERRWV (
1 60HLSODES-- ERROR FROM ODRV IN YALE SPARSE MATRIX PACKAGE
1 60, 31, 1, 0, 0, 0, 0, 0.0E0, 0.0EO)

IMUL = (IYS - 1)/N

IREM = IYS - IMUL*N

CALL XERRWV (
1 60H AT T (=R1l), ODRV RETURNED ERROR FLAG = I1*NEQ + I2.
1 60, 31, 1, 2, IMUL, IREM, 1, TN, 0.0E0)

GO TO 700

CALL XERRWV (
1 60HLSODES-- RWORK LENGTH INSUFFICIENT (FOR SUBROUTINE CDRYV) .
1 60, 32, 1, 0, 0, 0, 0, 0.0EO0, 0.0EQ)

CALL XERRWV (
1 60H LENGTH NEEDED IS .GE. LENRW (=I1), EXCEEDS LRW (=I2)
1 60, 32, 1, 2, LENRW, LRW, 0, 0.0E0, 0.0EO0)

GO TO 700

CALL XERRWV (
1 60HLSODES-- ERROR FROM CDRV IN YALE SPARSE MATRIX PACKAGE
1 60, 33, 1, 0, 0, 0, O, 0.0E0, 0.0EO) ‘
IMUL = (IYS - 1)/N

IREM = IYS - IMUL*N

CALL XERRWV {
1 60H AT T (=R1l), CDRV RETURNED ERROR FLAG = I1*NEQ + I2.
1 60, 33, 1, 2, IMUL, IREM, 1, TN, 0.0E0)



IF (IMUL .EQ. 2) CALL XERRWV (
1l 60H DUPLICATE ENTRY IN SPARSITY STRUCTURE DESCRIPTORS ,
- 1 60, 33, 1, 0, 0, 0, O, 0.0EO, 0.OEO0)
: IF (IMUL .EQ. 3 .OR. IMUL .EQ. 6) CALL XERRWV (
1 60H INSUFFICIENT STORAGE FOR NSFC (CALLED BY CDRV) '
— 1 60, 33, 1, 0, 0, 0, 0, 0.0E0, 0.0EO0)

700 IF (ILLIN .EQ. 5) GO TO 710
ILLIN = ILLIN + 1
- ISTATE = -3 )
RETURN
710 CALL XERRWV(50HLSODES-- REPEATED OCCURRENCES OF ILLEGAL INPUT ,
_— 1 50, 302, 1, 0, O, 0, O, 0.0EO, 0.0EQ)

800 CALL XERRWV(50HLSODES-- RUN ABORTED.. APPARENT INFINITE LOOP ,
1 50, 303, 2, 0, 0O, 0, O, 0.0E0, 0.0EO)
RETURN

----------------------- END OF SUBROUTINE LSODES ----------m---mmmmem-



